317 research outputs found

    Joint resummation for pion wave function and pion transition form factor

    Get PDF
    We construct an evolution equation for the pion wave function in the kTk_T factorization theorem, whose solution sums the mixed logarithm ln⁑xln⁑kT\ln x\ln k_T to all orders, with xx (kTk_T) being a parton momentum fraction (transverse momentum). This joint resummation induces strong suppression of the pion wave function in the small xx and large bb regions, bb being the impact parameter conjugate to kTk_T, and improves the applicability of perturbative QCD to hard exclusive processes. The above effect is similar to those from the conventional threshold resummation for the double logarithm ln⁑2x\ln^2 x and the conventional kTk_T resummation for ln⁑2kT\ln^2 k_T. Combining the evolution equation for the hard kernel, we are able to organize all large logarithms in the Ξ³βˆ—Ο€0β†’Ξ³\gamma^{\ast} \pi^{0} \to \gamma scattering, and to establish a scheme-independent kTk_T factorization formula. It will be shown that the significance of next-to-leading-order contributions and saturation behaviors of this process at high energy differ from those under the conventional resummations. It implies that QCD logarithmic corrections to a process must be handled appropriately, before its data are used to extract a hadron wave function. Our predictions for the involved pion transition form factor, derived under the joint resummation and the input of a non-asymptotic pion wave function with the second Gegenbauer moment a2=0.05a_2=0.05, match reasonably well the CLEO, BaBar, and Belle data.Comment: 31 pages, 7 figure

    Copy-Paste Image Augmentation with Poisson Image Editing for Ultrasound Instance Segmentation Learning

    Full text link
    Deep learning has shown great success in high-level image analysis problems; yet its efficacy relies on the quality and diversity of the training data. In this work, we introduce a copypaste image augmentation for ultrasound images. The Poisson image editing technique is used to generate realistic and seamless boundary transitions around the pasted image. Results showed that the proposed image augmentation technique improves training performance in terms of higher objective metrics and more stable training results

    Five Facets of 6G: Research Challenges and Opportunities

    Full text link
    Whilst the fifth-generation (5G) systems are being rolled out across the globe, researchers have turned their attention to the exploration of radical next-generation solutions. At this early evolutionary stage we survey five main research facets of this field, namely {\em Facet~1: next-generation architectures, spectrum and services, Facet~2: next-generation networking, Facet~3: Internet of Things (IoT), Facet~4: wireless positioning and sensing, as well as Facet~5: applications of deep learning in 6G networks.} In this paper, we have provided a critical appraisal of the literature of promising techniques ranging from the associated architectures, networking, applications as well as designs. We have portrayed a plethora of heterogeneous architectures relying on cooperative hybrid networks supported by diverse access and transmission mechanisms. The vulnerabilities of these techniques are also addressed and carefully considered for highlighting the most of promising future research directions. Additionally, we have listed a rich suite of learning-driven optimization techniques. We conclude by observing the evolutionary paradigm-shift that has taken place from pure single-component bandwidth-efficiency, power-efficiency or delay-optimization towards multi-component designs, as exemplified by the twin-component ultra-reliable low-latency mode of the 5G system. We advocate a further evolutionary step towards multi-component Pareto optimization, which requires the exploration of the entire Pareto front of all optiomal solutions, where none of the components of the objective function may be improved without degrading at least one of the other components

    CoMP Enhanced Subcarrier and Power Allocation for Multi-Numerology based 5G-NR Networks

    Full text link
    With proliferation of fifth generation (5G) new radio (NR) technology, it is expected to meet the requirement of diverse traffic demands. We have designed a coordinated multi-point (CoMP) enhanced flexible multi-numerology (MN) for 5G-NR networks to improve the network performance in terms of throughput and latency. We have proposed a CoMP enhanced joint subcarrier and power allocation (CESP) scheme which aims at maximizing sum rate under the considerations of transmit power limitation and guaranteed quality-of-service (QoS) including throughput and latency restrictions. By employing difference of two concave functions (D.C.) approximation and abstract Lagrangian duality method, we theoretically transform the original non-convex nonlinear problem into a solvable maximization problem. Moreover, the convergence of our proposed CESP algorithm with D.C. approximation is analytically derived with proofs, and is further validated via numerical results. Simulation results demonstrated that our proposed CESP algorithm outperforms the conventional non-CoMP and single numerology mechanisms along with other existing benchmarks in terms of lower latency and higher throughput under the scenarios of uniform and edge users

    Reconfigurable Intelligent Surface-Empowered Self-Interference Cancellation for 6G Full-Duplex MIMO Communication Systems

    Full text link
    With the advent of sixth-generation (6G) wireless communication networks, it requires substantially increasing wireless traffic and extending serving coverage. Reconfigurable intelligent surface (RIS) is widely considered as a promising technique which is capable of improving the system data rate, energy efficiency and coverage extension as well as the benefit of low power consumption. Moreover, full-duplex (FD) transmission provides simultaneous transmit and received signals, which theoretically enhances twice spectrum efficiency. However, the self-interference (SI) in FD is a challenging task requiring complex and high-overhead cancellation, which can be resolved by configuring appropriate phase of RIS elements. This paper has proposed an RIS-empowered full-duplex self-interference cancellation (RFSC) scheme to alleviate the severe SI in an RIS-FD system. We consider the SI minimization of RIS-FD uplink (UL) while guaranteeing quality-of-service (QoS) of UL users. The closed-form solution is theoretically derived by exploiting Lagrangian method under different numbers of RIS elements and receiving antennas. Simulation results reveal that the proposed RFSC scheme outperforms the scenario without RIS deployment in terms of higher signal-to-interference-plus-noise ratio (SINR). Due to effective interference mitigation, the proposed RFSC can achieve the highest SINR compared to other existing schemes in open literatures

    Robust Active and Passive Beamforming for RIS-Assisted Full-Duplex Systems under Imperfect CSI

    Full text link
    The sixth-generation (6G) wireless technology recognizes the potential of reconfigurable intelligent surfaces (RIS) as an effective technique for intelligently manipulating channel paths through reflection to serve desired users. Full-duplex (FD) systems, enabling simultaneous transmission and reception from a base station (BS), offer the theoretical advantage of doubled spectrum efficiency. However, the presence of strong self-interference (SI) in FD systems significantly degrades performance, which can be mitigated by leveraging the capabilities of RIS. Moreover, accurately obtaining channel state information (CSI) from RIS poses a critical challenge. Our objective is to maximize downlink (DL) user data rates while ensuring quality-of-service (QoS) for uplink (UL) users under imperfect CSI from reflected channels. To address this, we introduce the robust active BS and passive RIS beamforming (RAPB) scheme for RIS-FD, accounting for both SI and imperfect CSI. RAPB incorporates distributionally robust design, conditional value-at-risk (CVaR), and penalty convex-concave programming (PCCP) techniques. Additionally, RAPB extends to active and passive beamforming (APB) with perfect channel estimation. Simulation results demonstrate the UL/DL rate improvements achieved considering various levels of imperfect CSI. The proposed RAPB/APB schemes validate their effectiveness across different RIS deployment and RIS/BS configurations. Benefited from robust beamforming, RAPB outperforms existing methods in terms of non-robustness, deployment without RIS, conventional successive convex approximation, and half-duplex systems

    A New Paradigm for Device-free Indoor Localization: Deep Learning with Error Vector Spectrum in Wi-Fi Systems

    Full text link
    The demand for device-free indoor localization using commercial Wi-Fi devices has rapidly increased in various fields due to its convenience and versatile applications. However, random frequency offset (RFO) in wireless channels poses challenges to the accuracy of indoor localization when using fluctuating channel state information (CSI). To mitigate the RFO problem, an error vector spectrum (EVS) is conceived thanks to its higher resolution of signal and robustness to RFO. To address these challenges, this paper proposed a novel error vector assisted learning (EVAL) for device-free indoor localization. The proposed EVAL scheme employs deep neural networks to classify the location of a person in the indoor environment by extracting ample channel features from the physical layer signals. We conducted realistic experiments based on OpenWiFi project to extract both EVS and CSI to examine the performance of different device-free localization techniques. Experimental results show that our proposed EVAL scheme outperforms conventional machine learning methods and benchmarks utilizing either CSI amplitude or phase information. Compared to most existing CSI-based localization schemes, a new paradigm with higher positioning accuracy by adopting EVS is revealed by our proposed EVAL system

    BTS: Bifold Teacher-Student in Semi-Supervised Learning for Indoor Two-Room Presence Detection Under Time-Varying CSI

    Full text link
    In recent years, indoor human presence detection based on supervised learning (SL) and channel state information (CSI) has attracted much attention. However, the existing studies that rely on spatial information of CSI are susceptible to environmental changes, such as object movement, atmospheric factors, and machine rebooting, which degrade prediction accuracy. Moreover, SL-based methods require time-consuming labeling for retraining models. Therefore, it is imperative to design a continuously monitored model life-cycle using a semi-supervised learning (SSL) based scheme. In this paper, we conceive a bifold teacher-student (BTS) learning approach for presence detection systems that combines SSL by utilizing partially labeled and unlabeled datasets. The proposed primal-dual teacher-student network intelligently learns spatial and temporal features from labeled and unlabeled CSI. Additionally, the enhanced penalized loss function leverages entropy and distance measures to distinguish drifted data, i.e., features of new datasets affected by time-varying effects and altered from the original distribution. The experimental results demonstrate that the proposed BTS system sustains asymptotic accuracy after retraining the model with unlabeled data. Furthermore, the label-free BTS outperforms existing SSL-based models in terms of the highest detection accuracy while achieving the asymptotic performance of SL-based methods

    CRONOS: Colorization and Contrastive Learning for Device-Free NLoS Human Presence Detection using Wi-Fi CSI

    Full text link
    In recent years, the demand for pervasive smart services and applications has increased rapidly. Device-free human detection through sensors or cameras has been widely adopted, but it comes with privacy issues as well as misdetection for motionless people. To address these drawbacks, channel state information (CSI) captured from commercialized Wi-Fi devices provides rich signal features for accurate detection. However, existing systems suffer from inaccurate classification under a non-line-of-sight (NLoS) and stationary scenario, such as when a person is standing still in a room corner. In this work, we propose a system called CRONOS (Colorization and Contrastive Learning Enhanced NLoS Human Presence Detection), which generates dynamic recurrence plots (RPs) and color-coded CSI ratios to distinguish mobile people from vacancy in a room, respectively. We also incorporate supervised contrastive learning to retrieve substantial representations, where consultation loss is formulated to differentiate the representative distances between dynamic and stationary cases. Furthermore, we propose a self-switched static feature enhanced classifier (S3FEC) to determine the utilization of either RPs or color-coded CSI ratios. Our comprehensive experimental results show that CRONOS outperforms existing systems that apply machine learning, non-learning based methods, as well as non-CSI based features in open literature. CRONOS achieves the highest presence detection accuracy in vacancy, mobility, line-of-sight (LoS), and NLoS scenarios
    • …
    corecore