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induces strong suppression of the pion wave function in the small x and large b regions, b

being the impact parameter conjugate to kT , and improves the applicability of perturbative

QCD to hard exclusive processes. The above effect is similar to those from the conventional

threshold resummation for the double logarithm ln2 x and the conventional kT resummation

for ln2 kT . Combining the evolution equation for the hard kernel, we are able to organize

all large logarithms in the γ∗π0 → γ scattering, and to establish a scheme-independent

kT factorization formula. It will be shown that the significance of next-to-leading-order

contributions and saturation behaviors of this process at high energy differ from those

under the conventional resummations. It implies that QCD logarithmic corrections to a

process must be handled appropriately, before its data are used to extract a hadron wave

function. Our predictions for the involved pion transition form factor, derived under the

joint resummation and the input of a non-asymptotic pion wave function with the second

Gegenbauer moment a2 = 0.05, match reasonably well the CLEO, BaBar, and Belle data.
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1 Introduction

Great efforts have been devoted to the extension of the kT factorization theorem for exclu-

sive processes [1–8] to subleading levels recently. The next-to-leading-order (NLO) correc-

tions to the pion transition (electromagnetic) form factor associated with the πγ∗ → γ(π)

scattering have been calculated at leading power [9, 10]. Those to the B → π transition

form factors involved in B meson semileptonic decays were derived in [11]. Up to subleading

power, the three-parton contributions to the pion electromagnetic form factor, to the B → γ

transition form factor, and to the B → π transition form factors have been studied in [12,

13], and [14], respectively. A kT -dependent hard kernel is defined as the difference between

QCD diagrams and effective diagrams for transverse-momentum-dependent (TMD) hadron

wave functions. Therefore, to obtain a NLO hard kernel, both QCD diagrams and effective

diagrams need to be evaluated at the same level. The NLO analysis of the B meson and pion

wave functions have revealed various important logarithms, which stimulate corresponding

resummation formalisms for their organization to all orders in the strong coupling constant.

A TMD hadron wave function contains the light-cone singularity from the region with a

loop momentum parallel to a Wilson line on the light cone [15]. To regularize the light-cone

singularity, one may rotate the Wilson line away from the light cone to an arbitrary direc-

tion u with u2 6= 0 [15–17]. The higher-order wave function then depends on u2 through

the scale ζ2P ≡ 4(P · u)2/u2, where P denotes the hadron momentum. The variation of u,
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namely, of ζ2P introduces a factorization-scheme dependence into the hadron wave function.

The evaluation of the NLO effective diagrams for the B meson wave function indicates the

existence of the logarithms ln2(ζ2P /m
2
B) and lnx ln(ζ2P /m

2
B) [11], mB being the B meson

mass and x being the momentum fraction of the spectator. The NLO diagrams for the

pion wave function produce the mixed logarithm lnx ln(ζ2P /k
2
T ) [10], kT being the parton

transverse momentum. All the above logarithms become large as u2 → 0, and as x and

kT are small, which is the dominant kinematic region in the kT factorization theorem for

exclusive processes. The logarithms in the B meson wave function have been organized

under the rapidity resummation [18], whose effect was shown to diminish the B meson

wave function at the end point x → 0.

The above observation hints that the resummation of the mixed logarithm

lnx ln(ζ2P /k
2
T ) for the pion wave function would modify both the x and kT dependencies.

It then calls for the joint resummation [19–23], which was proposed to unify the conven-

tional threshold resummation for ln2 x [24–29] and the conventional kT resummation for

ln2 kT [16, 17, 30]. For a recent review on this subject, see [31]. In this paper we will

construct an evolution equation in the scale ζ2P following the idea in [20], whose solution

resums the mixed logarithm in the Mellin (N , conjugate to x) and impact-parameter (b,

conjugate to kT ) spaces. The inverse Mellin transformation is then applied to get the x

dependence of the pion wave function. It will be demonstrated that the joint resummation

induces suppression which is stronger at small x than at moderate x, and intensifies with

increase of b. This effect, similar to those of the threshold and kT resummations, improves

the applicability of perturbative QCD (PQCD) to hard exclusive processes. Combining the

evolution equation for the hard kernel of the γ∗π0 → γ scattering, we organize all the rel-

evant large logarithms, and remove the factorization-scheme dependence on ζ2P mentioned

before. This is the first time that the kT factorization for a simple exclusive process can

be made scheme independent in the presence of the light-cone singularity.

It has been known that γ∗π0 → γ serves as an ideal process for the determination

of the pion wave function, and the involved pion transition form factor F (Q2), Q2 being

the momentum transfer squared, has been investigated thoroughly. In particular, it was

claimed that the quantity Q2F (Q2) (including those for the η and η′ meson transition

form factors) begins to saturate at relatively low Q2 as calculated in the hard scattering

approach [32], in QCD sum rules (QCDSR) [33–36], in light-cone sum rules (LCSR) [37, 38],

and in the light-front holographic QCD [39]. We will analyze the leading-order (LO) and

NLO contributions to the pion transition form factor with inputs of different model wave

functions, including the asymptotic model, the flat model, and the model with the second

Gegenbauer moment a2. The results are compared to those from the PQCD approach [40],

that incorporates the conventional threshold and kT resummations. It will be observed

that the significance of the NLO correction to and the saturation behavior of Q2F (Q2)

differ under the joint resummation and the conventional resummations. It implies that

QCD logarithmic corrections to a process must be handled appropriately, before its data

are used to extract a hadron wave function. Our predictions for Q2F (Q2) from a non-

asymptotic pion wave function with a2 = 0.05 match reasonably well the CLEO, BaBar,

and Belle data, which seem to indicate scaling violation at currently accessible Q2.
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In section 2 we construct the evolution equation for the resummation of the mixed

logarithm in the pion wave function, and then solve it in the Mellin and impact-parameter

spaces. The inverse Mellin transformation of the solution is performed in section 3, with

different initial conditions of the evolution. Note that the running of the strong coupling

constant down to the low energy region has to be modified in order to avoid the Landau

pole. The joint resummation effect on the x and b dependencies of the pion wave function

is then examined. In section 4 the pion transition form factor is evaluated for a given

model wave function at the LO and NLO levels under the joint resummation and the

conventional resummations. The different outcomes for the NLO contributions and for

the saturation behaviors at high energy are compared. We summarize our findings, and

discuss potential extension of our formalism to more complicated processes in section 5. The

explicit expressions for the solutions of the evolution equation are collected in appendix A.

2 Evolution equation

The TMD pion wave function Φ(x, kT ) is defined by the non-local hadron-to-vacuum

matrix element1

Φ(x, kT , ζ
2, µf ) =

∫

dy+

2π

d2yT
(2π)2

e−ixP−y++ikT ·yT

×〈0|q̄(y)Wy(u)
† Iu;y,0W0(u)/n+γ5q(0)|π(P )〉 , (2.1)

where µf is the factorization scale, the coordinate y = (y+, 0,yT ) is off the light cone

generally, and xP− and kT are the longitudinal and transverse momenta carried by the

anti-quark q̄, respectively. A TMD hadron wave function describes the distributions of a

light parton in both light-ray and transverse directions. To maintain the gauge invariance

of the definition in eq. (2.1), the gauge-link operator Wy(u)

Wy(u) = P exp

[

−ig

∫ ∞

0
dλu ·A(y + λu)

]

, (2.2)

has been introduced, where g is the QCD coupling constant, and P denotes the path-

ordered exponential. The non-light-like vector u, different from the usual Wilson line

direction n+ = (1, 0,0T ), plays a role of the regulator for the light-cone divergences [15].

The transverse gauge link Iu;y,0, unraveling the cusp obstruction in the contour of the

Wilson lines at infinity, does not contribute in the covariant gauge [42].

As determining a NLO hard kernel in the kT factorization formula for a pion-induced

process, we perform the infrared substraction defined as the convolution of the NLO pion

wave function with the LO hard kernel. The QCD correction to the pion wave function

gives rise to the mixed logarithm lnx ln(ζ2P−2/k2T ) [9–11], with the dimensionless rapidity

parameter

ζ2 =
4(n− · u)2

u2
, (2.3)

1The leading-twist light-cone projector for a pion in the collinear factorization can be found in [41].
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n− = (0, 1,0T ) being a light-like vector along the pion momentum P . The double rapidity

logarithm ln2 ζ2 in the B meson case is absent here because of the color-transparency

mechanism for an energetic pion, which suppresses soft gluon contributions.

The goal of this section is to construct an evolution equation, whose solution sums the

mixed logarithm in the pion wave function. Following [20], we trade the derivative with

respect to the rapidity parameter ζ2 for the variation of the Wilson link direction u,

ζ2
d

dζ2
Φ = − u2

n− · u
nα
−

2

d

duα
Φ . (2.4)

It is obvious that this chain rule simplifies the analysis dramatically as the u dependence

appears only through the Wilson line interactions. Applying eq. (2.4) to the Feynman rule

associated with the Wilson link, we have

ζ2
d

dζ2
uβ

u · l + iǫ
=

ûβ

2u · l , (2.5)

with the special vertex

ûβ =
u2

n− · u

(

n− · l
u · l uβ − nβ

−

)

. (2.6)

We will derive the rapidity evolution equation

ζ2
d

dζ2
Φ(x, kT , ζ

2, µf ) = Γ(x, kT , ζ
2)⊗ Φ(x, kT , ζ

2, µf ) , (2.7)

where⊗ represents convolutions in the momentum fraction x and the transverse momentum

kT , and the evolution kernel Γ involves the diagrams with the special vertex.

2.1 Evolution kernel

It is easy to see that the structure of the special vertex suppresses a collinear gluon contri-

bution to Γ [18]. The evolution kernel is then dominated by soft and hard gluon exchanges,

usually denoted as the functions K and G, respectively. The soft and hard gluon radiations

off the active quark, as shown in figure 1, lead to

K1 = − ig2CF

2

∫

d4l

(2π)4
û · n−

(u · l + iǫ)(l2 + iǫ)(n− · l + iǫ)
, (2.8)

K2 ⊗ Φ =
ig2CF

2

∫

d4l

(2π)4
û · n−

(u · l + iǫ)(l2 + iǫ)(n− · l + iǫ)

×Φ(x− l−/P−, |kT − lT |, ζ2, µf ) , (2.9)

for the function K, CF being the color factor, and

G1 = − ig2CF

2

∫

d4l

(2π)4
(x̄ /P + /l)/̂u

(u · l + iǫ)(l2 + iǫ)[(x̄P + l)2 + iǫ]
,

G2 = K1 , (2.10)

for the function G with the variable x̄ ≡ 1− x.
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ππ +

(a)

ππ −

(b)

Figure 1. (a) diagrams for the function K from soft gluon exchanges between the Wilson lines

and the active quark, and (b) diagrams for the function G from hard gluon exchanges, where the

box denotes the special vertex. The second diagram in the function G is included to avoid the

double counting of the soft contribution. Those diagrams with gluon radiations off the spectator

quark are not displayed here.

Adopting the dimensional regularization for the ultraviolet divergence and regularizing

the infrared divergence with the gluon mass λ, we obtain

K1 = −αsCF

4π

(

1

ǫ
− γE + ln

4πµ2

λ2

)

. (2.11)

Since the soft divergences cancel between K1 and K2, and between G1 and G2, the gluon

mass λ will approach to zero eventually. For the evaluation of K2, we apply the Mellin and

Fourier transformations

Φ̃(N, b, ζ2, µf ) =

∫ 1

0
dx(1− x)N−1

∫

d2kT
(2π)2

exp(ikT · b) Φ(x, kT , ζ2, µf ) , (2.12)

b being the impact parameter. Equation (2.9) then gives K̃2 Φ̃(N, b, ζ2, µf ) with the soft

kernel

K̃2 =
ig2CF

2

∫

d4l

(2π)4

(

1− l−

P−

)N−1

exp(−ilT · b) û · n−

(u · l + iǫ)(l2 + iǫ)(n− · l + iǫ)
,

=
αsCF

2π

[

K0 (λb)−K0

(

ζP−b

N

)]

, (2.13)

in which the terms suppressed by powers of 1/ζ2 have been dropped, and K0 is the

zeroth-order modified Bessel function of the second kind. Hence, the bare function K̃(b)

is written as

K̃(b) = K1 + K̃2 = −αsCF

4π

(

1

ǫ
− γE + ln

4πµ2N2

ζ2 P−2

)

, (2.14)

where the large-N expansion of eq. (2.13) has been made, and the superscript (b) labels

the bare function explicitly.
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The bare hard function G(b) can be calculated following the same line, and reads

G(b) = G1 −G2 =
αsCF

4π

[

1

ǫ
− γE + ln

4πµ2

ζ2(x̄P−)2
− 4

]

. (2.15)

We will adopt the approximation x̄ ≈ 1 in the small x region, where the mixed logarithm

plays a significant role. It is found that both the soft and hard functions depend on the

factorization scale µ, and such a dependence cancels in their sum. This fact is attributed

to the µ independence of the mixed logarithm that we are going to resum.

Applying the modified minimal substraction (MS) scheme to the ultraviolet renor-

malization yields

K̃(r)(µ) = −αsCF

2π
ln

µN

ζP−
, λK̃ = µ

dδK

dµ
=

αsCF

2π
,

G(r)(µ) =
αsCF

2π

(

ln
µ

ζP−
− 2

)

, λG = µ
dδG

dµ
= −λK̃ , (2.16)

where the additive counterterms δK (δG) of the function K̃(b) (G(b)) can be read from

eq. (2.14) (eq. (2.15)). The renormalization-group (RG) equations for the soft and hard

functions are then given, in terms of the anomalous dimensions λK̃ and λG, by

µ
dK̃(r)

dµ
= −λK̃ , µ

dG(r)

dµ
= −λG , (2.17)

which lead to the RG improved evolution kernel

K̃(r)(µ) +G(r)(µ) = K̃(r)(µ0) +G(r)(µ1)−
∫ µ1

µ0

dµ̃

µ̃
λK̃(µ̃) . (2.18)

We choose the scales

µ0 := µ0(ζ) =
ζP−

N
, µ1 := µ1(ζ) = e2 ζ P− , (2.19)

to diminish the initial conditions K̃(r)(µ0) and G(r)(µ1).

The evolution kernel Γ also contains the diagrams with gluon radiations from the

spectator quark in principle. However, these diagrams contribute at the next-to-leading

logarithmic level, because the NLO effective diagrams with gluon radiations off the specta-

tor quark do not generate the mixed logarithm lnx ln(ζ2P−2/k2T ) as indicated by eqs. (36)

and (37) in [11]. The corresponding soft and hard functions are expressed as

K ′
1 = G′

2 = K1,

K ′
2 ⊗ Φ = K2 ⊗ Φ ,

G′
1 =

ig2CF

2

∫

d4l

(2π)4
(x/P − /l)/u

(u · l + iǫ)(l2 + iǫ)[(xP − l)2 + iǫ]
, (2.20)

which generate

G′(b) = G′
1 −G′

2 =
αsCF

4π

[

1

ǫ
− γE + ln

4πµ2

ζ2(xP−)2
− 4

]

. (2.21)
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The logarithm lnx in the soft function K ′
2 ⊗ Φ can be extracted by implementing the

approximation [19]

Φ(x− l−/P−, |kT − lT |, ζ2, µf ) ≈ θ(xP− − l−)Φ(x, kT , ζ
2, µf ) , (2.22)

under which we obtain

K ′
2 =

ig2CF

2

∫

d4l

(2π)4
û · n

(u · l + iǫ)(l2 + iǫ)(n− · l + iǫ)
θ
(

xP− − l−
)

,

=
αsCF

2π
ln

ζ xP−

λ
. (2.23)

The cancelation of the soft divergences betweenK ′
1 (= K1) in eq. (2.11) andK ′

2 in eq. (2.23)

is evident, whose sum gives

K ′(b) = K ′
1 +K ′

2 = −αsCF

4π

[

1

ǫ
− γE + ln

4πµ2

ζ2 (xP−)2

]

. (2.24)

Applying the MS scheme to the bare soft and hard functions gives the renormalized

ones

K ′(r) = −αsCF

2π
ln

µ

x ζ P−
, (2.25)

G′(r) =
αsCF

2π

(

ln
µ

x ζ P−
− 2

)

. (2.26)

Obviously, K ′(r) and G′(r) are characterized by the same scale xζP−, implying that a

RG treatment is not necessary here, and that the sum K ′(r) + G′(r) produces only a

next-to-leading logarithm as stated above. Hence, this contribution can be absorbed into

the solution of the evolution equation by tuning the initial rapidity parameter ζ, whose

variation within the order-unity range causes a next-to-leading logarithmic effect. We

will take advantage of the freedom in choosing the bounds of ζ to achieve the matching

between the resummation formula and the NLO results of the pion transition form factor.

That is, the summation of the above next-to-leading logarithms can be taken care of by

the matching procedure, and the kernel K ′(r) +G′(r) will be neglected below.

2.2 Solution in Mellin and impact-parameter spaces

Equation (2.7) under the Mellin and Fourier transformations becomes

ζ2
d

dζ2
Φ̃(N, b, ζ2, µf ) = Γ̃(N, b, ζ2) Φ̃(N, b, ζ2, µf ) , (2.27)

with the evolution kernel

Γ̃(N, b, ζ2) = K̃(r)(µ) +G(r)(µ) = −
∫ µ1(ζ)

µ0(ζ)

dµ̃

µ̃
λK(µ̃) . (2.28)

Solving the differential equation (2.27), we get

Φ̃(N, b, ζ2, µf ) = exp

{

−
∫ ζ2

ζ2
0

dζ̃2

ζ̃2

[

∫ µ1(ζ̃)

µ0(ζ̃)

dµ̃

µ̃
λK(µ̃) θ

(

µ1(ζ̃)− µ0(ζ̃)
)

]}

×Φ̃(N, b, ζ20 , µf ) , (2.29)
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which constitutes one of the main technical results of this paper. The initial rapidity

parameter ζ0 will be specified later, and the step function in the exponent will become

effective as we perform the inverse Mellin transformation.

Apart from the mixed logarithm, the NLO pion wave function contains the single

logarithm ln(µf/Q), which can be summed via the standard RG equation

µf
d

dµf
Φ̃(N, b, ζ2, µf ) = −γπ(µf ) Φ̃(N, b, ζ2, µf ) , (2.30)

with the anomalous dimension [10]

γπ(µf ) = −3

2

αs(µf )CF

π
. (2.31)

Combining the joint resummation and the solution to eq. (2.30) leads to

Φ̃(N, b, ζ2, µf ) = exp

{

−
∫ ζ2

ζ2
0

dζ̃2

ζ̃2

[

∫ µ1(ζ̃)

µ0(ζ̃)

dµ̃

µ̃
λK(µ̃) θ

(

µ1(ζ̃)− µ0(ζ̃)
)

]

+
3

2

∫ µf

µi

dµ̃

µ̃

αs(µ̃)CF

π

}

Φ̃(N, b, ζ20 , µi) , (2.32)

where µi is the initial scale of the RG evolution.

Note that the physical form factor

F (Q2) = Φ̃(N, b, ζ2, µf )⊗ H̃(N, b, ζ2, Q2, µf ) , (2.33)

is independent of the factorization scheme and the factorization scale µf , where H̃

represents the hard kernel in the Mellin and impact-parameter spaces. Therefore, we have

the evolution equation

ζ2
d

dζ2
H̃(N, b, ζ2, Q2, µf ) = −Γ̃(N, b, ζ2) H̃(N, b, ζ2, Q2, µf ) , (2.34)

for the joint resummation, and the RG equation

µf
d

dµf
H̃(N, b, ζ2, Q2, µf ) = γπ(µf ) H̃(N, b, ζ2, Q2, µf ) . (2.35)

The solution of the above two differential equations gives the resummation improved hard

kernel

H̃(N, b, ζ2, Q2, µf ) = exp

{
∫ ζ2

1

ζ2

dζ̃2

ζ̃2

[

∫ µ1(ζ̃)

µ0(ζ̃)

dµ̃

µ̃
λK(µ̃) θ

(

µ1(ζ̃)− µ0(ζ̃)
)

]

−3

2

∫ µf

t

dµ̃

µ̃

αs(µ̃)CF

π

}

H̃(N, b, ζ21 , Q
2, t) , (2.36)

with the final rapidity parameter ζ1 and the characteristic hard scale t. We make use of

the freedom of choosing the bounds ζ20 and ζ21 for the joint resummation, such that the
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NLO logarithmic enhancements in Φ̃(N, b, ζ20 , µi) and H̃(N, b, ζ21 , Q
2, t), shown in eqs. (39)

and (40) of [9], respectively, are eliminated. This requires

ζ20 =

(

aN1/4

P− b

)2

, ζ21 = ã N1/2 . (2.37)

with the constants

a =
e−1/4

2
, ã = (2 e)−1/2 . (2.38)

Inserting eqs. (2.32) and (2.36) into eq. (2.33), we derive

F (Q2) = exp

{

−
∫ ζ2

1

ζ2
0

dζ̃2

ζ̃2

[

∫ µ1(ζ̃)

µ0(ζ̃)

dµ̃

µ̃
λK(µ̃) θ

(

µ1(ζ̃)− µ0(ζ̃)
)

]

+
3

2

∫ t

µi

dµ̃

µ̃

αs(µ̃)CF

π

}

Φ̃(N, b, ζ20 , µi)⊗ H̃(N, b, ζ21 , Q
2, t) ,

≡ Φ̃(N, b, ζ21 , t)⊗ H̃(N, b, ζ21 , Q
2, t) , (2.39)

which recapitulates the joint-resummation improved kT factorization formula. The expo-

nential factor in eq. (2.39) describes the evolution from the initial condition Φ̃(N, b, ζ20 , µi)

to the resummation improved wave function Φ̃(N, b, ζ21 , t). We have confirmed that the

expansion of the exponential factor up to O(αs) reproduces the mixed logarithm and the

single logarithm ln(1/N) in the NLO pion transition form factor [9]. Note that our resum-

mation formalism was established in the conjugate space, while the calculation in [9] was

performed in the momentum space. Hence, the correspondence between ln(1/N) in the

former and lnx in the latter is not precise, and the matching condition confirmed above in

fact suffers order-unity uncertainty at the next-to-leading-logarithmic level.

At last, we point out that the rapidity parameter ζ2 has been fixed to a specific

order-unity value for convenience in the conventional PQCD approach [6]. The only double

logarithm ln2(Q2/k2T ) under the power counting xQ ∼ kT in the TMD wave function

and the only double logarithm ln2 x in the hard kernel were then resumed [9, 43, 44].

Compared to the joint resummation, the PQCD approach is not factorization-scheme

independent, strictly speaking, and the summation of the double logarithms applies only

to a specific ζ2. That is, the formalism presented in this work represents a complete

treatment of the logarithmic enhancement for an arbitrary rapidity parameter in the pion

transition form factor, and the first scheme-independent kT factorization formula.

3 Resummation improved wave functions

In this section we explore the detailed properties of the resummation improved wave

function Φ̃(N, b, ζ21 , t). The factorization theorem for hard exclusive processes is usually

formulated in the momentum-fraction space (see, however [45]). The inverse Mellin

transformation for Φ̃(N, b, ζ21 , t) gives

Φ(x, b, ζ21 , t) =

∫ c+i∞

c−i∞

dN

2πi
(1− x)−N Φ̃(N, b, ζ21 , t), (3.1)
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where the parameter c is an arbitrary real number larger than the real part of the rightmost

singularity of Φ̃(N, b, ζ21 , t) in the complex N plane, and the Cauchy theorem can be

applied to deform the integration contour whenever necessary. We will not implement the

inverse Fourier transformation, so that the joint-resummation effect can be compared with

the Sudakov-resummation effect directly, which is usually studied in the impact-parameter

space.

The parametrization of the TMD pion wave function has been extensively discussed in

the literature (for a recent discussion, see [46]). For simplicity, factorization of the initial

pion wave function in the longitudinal and transverse momentum spaces

Φ(x, kT , ζ
2
0 , µi) = φ(x, ζ20 , µi) Σ(k

2
T ) , (3.2)

will be postulated. Keep in mind that the major task of this section is to illustrate the joint-

resummation effect. For definiteness, the transverse momentum distribution is taken as

Σ(k2T ) = 4πβ2 exp(−β2 k2T ) , (3.3)

where the prefactor is introduced to obey the normalization

∫

d2kT
(2π)2

Σ(k2T ) = 1 , (3.4)

and the shape parameter β is related to the root mean square of the transverse momentum

via

〈k2
T 〉 =

∫ 1
0 dx

∫

d2kT k2
T |Φ(x, kT , ζ20 , µi)|2

∫ 1
0 dx

∫

d2kT |Φ(x, kT , ζ20 , µi)|2
=

1

2β2
. (3.5)

According to [47, 48], the input 〈k2
T 〉1/2 = 350MeV that fulfills various constraints

(including the π → γ γ decay rate) leads to β = 2.0GeV−1.

The longitudinal momentum distribution φ(x, ζ20 , µi) is assumed to be the same as the

light-cone distribution amplitude (LCDA) ϕ(x, µi). The one-loop evolution equation indi-

cates that the pion LCDA can be expanded in terms of the Gegenbauer polynomials C
3/2
n ,

ϕ(x, µi) = 6x(1− x)
∞
∑

n=0

an(µi)C
3/2
n (2x− 1) , (3.6)

where the odd Gegenbauer moments a2n+1 vanish due to symmetry prosperities. The

dependence of a2n on the scale µi is governed by the well-known Efremov-Radyushkin-

Brodsky-Lepage equation [49, 50]. Along this line, we consider the following three models

for the longitudinal momentum distribution

φI(x, ζ20 , µi) = 6x(1− x) ,

φII(x, ζ20 , µi) = 1,

φIII(x, ζ20 , µi) = 6x(1− x)
[

1 + a2C
3/2
2 (2x− 1)

]

, (3.7)

with the Gegenbauer polynomial C
3/2
2 (x) = (3/2)(5x2 − 1).
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The first model φI corresponds to the pion LCDA in the asymptotic limit. The flat

distribution φII was proposed in [51, 52], where a nonperturbative correction beyond the

operator product expansion was also introduced to explain the scaling violation indicated

by the BaBar data. As there is overwhelming evidence that the pion LCDA at energy

scales accessible in current experiments is broader than the asymptotic model, we keep

the sub-leading Gegenbauer term in φIII. The contribution from a higher Gegenbauer

term to the pion transition form factor depends on the momentum transfer squared Q2

and the shape parameter β [53, 54]. Fitting to the BaBar data, it has been realized

that one can at best determine the second Gegenbauer moment and the shape parameter

simultaneously in the framework of the kT factorization [46]. For this reason, also

expecting the quick convergence of the conformal spin expansion of the pion wave function

(see, however, [55, 56]), we will confine the analysis to the second Gegenbauer moment.

Our formalism can be extended to include higher Gegenbauer terms straightforwardly.

3.1 Resummation with fixed αs

To make our discussion more transparent, we start from the inverse Mellin transformation

with a frozen coupling constant, and then generalize it to the case with a running cou-

pling constant. For a frozen coupling αs, the joint-resummation improved wave function

Φ̃(N, b, ζ21 , t) is easily deduced from eq. (2.32)

Φ̃(N, b, ζ21 , t) = exp

{

αsCF

π

[

− ln

(

ã

a
P−b

)

(lnN + 2) +
3

2
ln

(

t

µi

)]}

×Φ̃(N, b, ζ20 , µi) . (3.8)

The exponential contains a branch cut on the negative real N axis and a singularity at

N = 0. The analytical property of the wave function Φ̃(N, b, ζ21 , t) also depends on the

initial condition Φ̃(N, b, ζ20 , µi).

The Mellin and Fourier transformations defined in eq. (2.12) lead the three models to

Φ̃I(N, b, ζ20 , µi) =
6

(N + 1)(N + 2)
exp

(

− b2

4β2

)

, (3.9)

Φ̃II(N, b, ζ20 , µi) =
1

N
exp

(

− b2

4β2

)

, (3.10)

Φ̃III(N, b, ζ20 , µi) =
6

(N + 1)(N + 2)

[

1 + 6a2
(N − 1)(N − 2)

(N + 3)(N + 4)

]

exp

(

− b2

4β2

)

. (3.11)

As inserting the asymptotic model Φ̃I(N, b, ζ20 , µi) into eq. (3.8), Φ̃(N, b, ζ21 , t) develops two

additional poles at N = −1 and −2. According to the Cauchy theorem, the contour for

the inverse Mellin transformation is deformed as displayed in figure 2, which (i) runs from

minus infinity towards N = −2 below the branching cut, (ii) slides into an infinitesimal

semicircle around N = −2, (iii) continues toward N = −1 below the branching cut, (iv)

slides into another infinitesimal semicircle around N = −1, (v) runs to N = −r with

0 < r < 1, (vi) revolves around the origin along a finite circle of radius r, and (vii) runs

back to minus infinity in a way that reverses the steps (i)-(v) above the branching cut.
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N

Figure 2. Integration contour of the inverse Mellin transformation for the asymptotic pion wave

function. Two infinitesimal circles at N = −1 and −2 and a finite circle at N = 0 with radius r

are introduced to ensure that the function Φ̃(N, b, ζ21 , t) is analytical in the region embraced by the

contour.

It is trivial to derive the joint-resummation improved pion wave function

Φ
I
(x, b, ζ21 , t)

= 6 exp

(

− b2

4β2

)

exp

{

αsCF

π

[

−2 â+
3

2
ln

(

t

µi

)]}

×
{ 2
∑

n=1

(−1)n−1 (1− x)n exp [−αsCF â lnn] cos [αsCF â]

+

∫ π

−π

dϕ

2π
(1− x)−reiϕ reiϕ

(1 + reiϕ)(2 + reiϕ)
exp

[

−αsCF

π
â ln(reiϕ)

]

+

∫ +∞

ln r

dw

π
(1− x)e

w ew

(1− ew)(2− ew)
exp

[

−αsCF

π
âw

]

sin [αsCF â]

}

, (3.12)

for the variable

â = ln

(

ã

a
P−b

)

> 0 . (3.13)

The first term in the above expression comes from the contributions of the N = −1 and −2

poles, the second term corresponds to the integration along the circle at N = 0 with radius

r, and the last term arises from the discontinuity of the integrand along the branching cut.

It can be verified that Φ
I
(x, b, ζ21 , t) is independent of the radius 0 < r < 1 as it should.

The inverse Mellin transformation is performed along the same line in the case of the

flat model. The initial condition introduces only a single pole at N = 0, which is also a
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branching point of the exponential in eq. (3.8). The contour is shown in figure 2, with the

two infinitesimal circles around N = −1 and = 2 being removed. This immediately yields

Φ
II
(x, b, ζ21 , t)

= exp

(

− b2

4β2

)

exp

{

αsCF

π

[

−2 â+
3

2
ln

(

t

µi

)]}

×
{
∫ π

−π

dϕ

2π
(1− x)−reiϕ exp

[

−αsCF

π
â ln(reiϕ)

]

−
∫ +∞

ln r

dw

π
(1− x)e

w

exp

[

−αsCF

π
âw

]

sin [αsCF â]

}

. (3.14)

The resummation improved wave function with the initial condition Φ̃III(N, b, ζ20 , µi)

is calculated similarly, albeit with more involved analytical structures of the integrand;

we need to modify the contour in figure 2, so that two additional poles at N = −3 and

−4 are circumvented. It implies that including higher Gegenbauer terms in the initial

condition of the wave function generates a longer sequence of poles to be avoided in the

contour integration. We derive

Φ
III
(x, b, ζ21 , t)

= 6 exp

(

− b2

4β2

)

exp

{

αsCF

π

[

−2 â+
3

2
ln

(

t

µi

)]}

×
{ 4
∑

n=1

κn (1− x)n exp [−αsCF â lnn] cos [αsCF â]

+

∫ π

−π

dϕ

2π
(1− x)−reiϕ r eiϕ f(a2, re

iϕ)

(1 + reiϕ)(2 + reiϕ)
exp

[

−αsCF

π
â ln(reiϕ)

]

+

∫ +∞

ln r

dw

π
(1−x)e

w ew f(a2,−ew)

(1−ew)(2−ew)
exp

[

−αsCF

π
âw

]

sin [αsCF â]

}

, (3.15)

where the coefficients κn and the function f(x1, x2) are given by

κ1 = 1 + 6 a2 , κ2 = −(1 + 36 a2) ,

κ3 = 60 a2 , κ4 = −30 a2 ,

f(x1, x2) = 1 + 6x1
(−1 + x2)(−2 + x2)

(3 + x2)(4 + x2)
. (3.16)

Apparently, eq. (3.15) reduces to eq. (3.12), when the second Gegenbauer moment a2 is

set to zero.

A more complicated model for the pion wave function

φIV(x, ζ20 , µi) =
Γ(2 + 2α)

[Γ(1 + α)]2
(xx̄)α , (3.17)
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with 0 < α < 1, has been advocated in [57, 58]. Specifically, the model with α = 1/2 was

derived in the light-front holographic QCD approach [59, 60]. The corresponding initial

condition

Φ̃IV(N, b, ζ20 , µi) =
Γ(2 + 2α)

[Γ(1 + α)]2
Γ(N + α)

Γ(N + 2α+ 1)
exp

(

− b2

4β2

)

, (3.18)

develops infinitely many poles at N+α = 0, −1, −2, . . . in the complex N plane. The study

of the joint-resummation effect on this model is similar, and will not be performed here.

3.2 Resummation with running αs

We are now in a position of computing the joint-resummation improved pion wave function

Φ(x, b, ζ21 , t) with a running coupling αs. To avoid the Landau singularity in the inverse

Mellin transformation, the parametrization [61]

αs(µ) =
4π

β0

[

1

ln(µ2/Λ2
QCD)

−
Λ2
QCD

µ2 − Λ2
QCD

]

, (3.19)

is adopted at one loop, with the QCD scale ΛQCD and the one-loop QCD β function

β0 = (11Nc − 2Nf )/3, Nc and Nf being the numbers of colors and flavors, respectively. In

the above expression the first term preserves the ultraviolet behavior of the standard QCD

coupling, and the second term cancels the ghost pole at µ = ΛQCD.

The substitution of eq. (3.19) into eq. (2.32) produces

Φ̃(N, b, ζ21 , t) = exp

[

CF

β0
(A1 + C1)

]

Φ̃(N, b, ζ20 , µi), (3.20)

where the functions A1 and C1 are written as

A1 =
4
∑

i=1

(−1)n−1
[

ri(ln ri − 1)− Li2(e
−ri)

]

,

C1 = 3

[

ln
1− Λ2

QCD/µ
2
i

1− Λ2
QCD/t

2
+ ln

ln(t2/Λ2
QCD)

ln(µ2
i /Λ

2
QCD)

]

, (3.21)

with the parameters

r1(3) =
1

2
lnN + λ1(3) , r2(4) = −3

2
lnN + λ2(4) ,

λ1(3) = λ2(4) + 4, λ2 = 2 ln
2 a

ΛQCD b
, λ4 = 2 ln

2 ãP−

ΛQCD
.

The exponential in eq. (3.20) still contains a branching cut along the negative real N axis,

so the contour in eq. (3.1) is deformed in the way exactly the same as in the case with a

frozen coupling.

For the asymptotic pion wave function, we get

Φ
I
(x, b, ζ2, t)

= 6 exp

(

− b2

4β2

)

exp

(

CF

β0
C1

)
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×
{ 2
∑

n=1

(−1)n−1 (1− x)n exp

[

F1(λ1, λ2, λ3, λ4, n)

]

cos

[

F2(λ1, λ2, λ3, λ4, n)

]

+

∫ π

−π

dϕ

2π
(1− x)−reiϕ reiϕ

(1 + reiϕ)(2 + reiϕ)
exp

[

F3(λ1, λ2, λ3, λ4, re
iϕ)

]

−
∫ +∞

ln r

dw

π
(1− x)e

w ew

(1− ew)(2− ew)
exp

[

F1(λ1, λ2, λ3, λ4, e
w)

]

× sin

[

F2(λ1, λ2, λ3, λ4, e
w)

]}

, (3.22)

where the explicit expressions of the functions Fi(λ1, λ2, λ3, λ4, η) are collected in ap-

pendix A, and the discontinuity of the polylogarithm function

Im [Li2(z ± iǫ)] = ∓π ln z θ(z − 1) , (3.23)

has been inserted. It has been also verified that the r dependence of Φ
I
(x, b, ζ21 , t) cancels

between the last two terms for arbitrary r in the range 0 < r < 1.

The same procedure leads to the joint-resummation improved pion wave function

Φ
II
(x, b, ζ21 , t) = exp

(

− b2

4β2

)

exp

(

CF

β0
C1

)

×
{
∫ π

−π

dϕ

2π
(1− x)−reiϕexp

[

F3(λ1, λ2, λ3, λ4, re
iϕ)

]

+

∫ +∞

ln r

dw

π
(1− x)e

w

exp

[

F1(λ1, λ2, λ3, λ4, e
w)

]

× sin

[

F2(λ1, λ2, λ3, λ4, e
w)

]}

, (3.24)

for the flat model, and

Φ
III
(x, b, ζ21 , t)

= 6 exp

(

− b2

4β2

)

exp

(

CF

β0
C1

)

×
{ 4
∑

n=1

κn (1− x)n exp

[

F1(λ1, λ2, λ3, λ4, n)

]

cos

[

F2(λ1, λ2, λ3, λ4, n)

]

+

∫ π

−π

dϕ

2π
(1− x)−reiϕ reiϕ

(1 + reiϕ)(2 + reiϕ)
exp

[

F3(λ1, λ2, λ3, λ4, re
iϕ)

]

×
[

1 + 6 a2
(−1 + reiϕ)(−2 + reiϕ)

(3 + reiϕ)(4 + reiϕ)

]
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Figure 3. Shape of the pion wave function in different models. (a) the solid, (thin) dashed and

(thin) dotted curves correspond to the initial condition φI(x, ζ20 , µi), the joint-resummation improved

wave function Φ
I (

x, 2 ã P−/a, ζ21 , µi

)

and Φ
I (

x, 4 ã P−/a, ζ21 , µi

)

for a frozen αs = 0.3 (running αs).

(b) the same for the flat pion wave function Φ
II
(x, b, ζ21 , µi). (c) the same for the non-asymptotic pion

wave function Φ
III
(x, b, ζ21 , µi) with the second Gegenbauer moment a2 = 0.17 determined in [62].

−
∫ +∞

ln r

dw

π
(1− x)e

w ew

(1− ew)(2− ew)

[

1 + 6 a2
(−1− ew)(−2− ew)

(3− ew)(4− ew)

]

×exp

[

F1(λ1, λ2, λ3, λ4, e
w)

]

sin

[

F2(λ1, λ2, λ3, λ4, e
w)

]}

, (3.25)

for the non-asymptotic model.

The joint-resmmation effect on the pion wave function with a frozen coupling, for

the example set parameters αs = 0.3, b = 2 ã P−/a and 4 ã P−/a, and Q2 = 5GeV2

is displayed in figure 3, where the RG evolution effect is not included. For all the

three considered models, the modification appears as the impact parameter b is greater

than bmin = ã/(aP−), which is easily understood from the exponentiation of the mixed
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logarithm − ln (ã P−b/a) (lnN + 2) in eq. (3.8). If the rapidity and factorization-scale

evolutions are switched off, it is confirmed that the pion wave function obeys its nor-

malization. A crucial consequence of the joint resummation, as read from figure 3, is

that the small x region receives stronger suppression compared to the moderate x region

as expected, while the large x region almost remains intact. Moreover, the suppression

strengthens with the transverse separation b between the valence quarks at a given

longitudinal momentum fraction. Therefore, the joint-resummation effect does not allow a

significant contribution from soft gluon exchanges. This well known Sudakov mechanism,

first formulated in QED, improves the applicability of PQCD to hard exclusive processes.

Turning to the case with a running coupling, we adopt the parameter ΛQCD = 250MeV

and the flavor number Nf = 6. As observed from figure 3, the resummation improved

pion wave function takes on a behavior rather similar to that for a frozen coupling. A

minor difference is that the small x region is even more suppressed in the former case,

which further boosts our confidence on the applicability of PQCD to exclusive processes

at moderate momentum transfer.

Before closing this section, we highlight the distinction between the pion wave functions

including the Sudakov resummation and including the joint resummation. For simplicity,

we confine ourselves to the asymptotic model, because the other two models exhibit a sim-

ilar b dependence. As indicated in figure 4, both resummation formalisms lead to suppres-

sion on the wave function in the large b region, which becomes more significant as the mo-

mentum transfer Q increases. This observation fulfills the concept that an energetic pion is

a compact hadronic bound state. A striking feature is that the joint-resummation improved

wave function concentrates on the small b region more than the Sudakov-resummation

improved one, which falls off smoothly in the intermediate b region. The concentra-

tion on the small b region is attributed to the exponentiation of the mixed logarithm

− ln (ã P−b/a) lnN , where the suppression with b is magnified by the large coefficient

lnN . However, the Sudakov-resummation improved wave function vanishes quickly as b →
1/ΛQCD, since the running coupling αs(1/b) hits the Landau pole. In the present derivation

the Landau pole has been avoided as shown in eq. (3.19), such that the joint resummation

does not diminish the wave function as b → 1/ΛQCD. We emphasize that this distinction,

due to the different treatments of the Landau-pole contribution, is not physically crucial. It

is found that the large b region is more suppressed with the growing of x in figures 4(b), but

not in figure 4(d): the small-x approximation has been adopted in the joint resummation, so

its effect is insensitive to the variation of x. The phenomenological consequences on the pion

transition form factor from the two resummations will be elaborated in the next section.

4 Pion transition form factor

The pion transition form factor F (Q2) involved in the γ∗π0 → γ process is defined by the

following matrix element

〈γ(P ′, ǫ∗)|jemµ (q)|π0(P )〉 = i g2em εµναβǫ
∗νPαP ′βF (Q2) , (4.1)
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Figure 4. Distinction between the asymptotic pion wave functions including the Sudakov resum-

mation and including the joint resummation. The solid, dashed, and dotted curves correspond to

the Sudakov-resummation improved pion wave function (a) at Q2 = 5 GeV2, 10 GeV2, and 40

GeV2 for the momentum fraction x = 0.2, and (b) at Q2 = 10 GeV2 for x = 0.2, 0.3, and 0.4. The

same for the joint-resummation improved pion wave functions in (c) and (d).

where jemµ (q) is an electromagnetic current, gem is the electromagnetic coupling constant,

q = P ′−P is the momentum transfer, and ǫ denotes the polarization of the outgoing photon.

The form factor F (Q2) (Q2 = −q2) was written, in the collinear factorization, as [50]

F (Q2) =

√
2 fπ
3

∫ 1

0
dx

ϕ(x, t)

xQ2

[

1 +H(1)(x,Q2, t)
]

, (4.2)

with the NLO hard kernel [63–65]

H(1)(x,Q2, t) =
αs(t)CF

2π

[

−
(

lnx+
3

2

)

ln
t2

Q2
+

1

2
ln2 x− x lnx

2(1− x)
− 9

2

]

. (4.3)
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It is seen that F (Q2) scales as 1/Q2 from the power counting of the hard kernel, and is

determined by the inverse moment of the pion LCDA at LO.

4.1 kT factorization formula

To suppress the end-point contribution (soft gluon exchanges) from the small x region

in the collinear factorization, the kT factorization has been developed for hard exclusive

processes, and continually refined by including the resummations of important logarithms

and power corrections as stated in the Introduction. This more sophisticated factorization

theorem can be derived diagrammatically [66] by applying the eikonal approximation to

collinear particles and the Ward identity to the diagram summation in the leading infrared

regions. For the specific rapidity parameter ζ2 = 2, the kT factorization formula at leading

power of 1/Q2 under the conventional resummations was given by [9, 40]

F (Q2) =

√
2 fπ
3

∫ 1

0
dx

∫ ∞

0
b dbΦ(x, b, t) e−S(x,b,Q,t) St(x,Q)

×K0(
√
xQ b)

[

1− αs(t)CF

4π

(

3 ln
t2 b

2
√
xQ

+ γE + 2 lnx+ 3− π2

3

)]

. (4.4)

The Sudakov factor S(x, b,Q, t) sums the double logarithm ln2(k2T /Q
2) and the single

logarithm ln(t2/Q2) through the RG equation. The threshold factor from the resummation

of ln2 x has been parameterized as

St(x,Q) =
21+c(Q2) Γ(32 + c(Q2))√

π Γ(1 + c(Q2))
[x(1− x)]c(Q

2) , (4.5)

for convenience, in which the power c(Q2) was determined to be

c(Q2) = 0.04Q2 − 0.51Q+ 1.87 , (4.6)

by fitting to the exact threshold resummation formula in the Mellin space. It was then

observed that the nontrivial Q2 dependence of c(Q2) is important for accommodating

both low and high Q2 data from BaBar. Note that the self interactions of the Wilson links

have been included into the NLO hard kernel in eq. (4.4), such that the coefficient of the

first term in the brackets has been changed from “1” to “3”, compared to eq. (40) in [9].

As argued in [67], the additional contribution from these self interactions can be canceled

by the soft subtraction in an alternative definition for the TMD pion wave function, as

the involved gauge parameter is tuned appropriately. In this work we have adopted the

definition of the TMD pion wave function with off light-cone Wilson links.

To minimize the factorization-scheme dependence of the pion transition form factor,

the resummation of the mixed logarithms in both the pion wave function and the hard

kernel has been performed in the previous section. The large logarithms in the initial

conditions of the pion wave function and the hard kernel were eliminated by choosing the

bounds ζ20 and ζ21 in eqs. (2.32) and (2.36), leading to

H(1)(x, kT , ζ
2
1 , Q

2, t) = −αs(t)CF

4π

(

3 ln
t2

xQ2 + k2T
+ ln 2 + 2

)

. (4.7)
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We then arrive at the joint-resummation improved factorization formula for the pion tran-

sition form factor

F (Q2) =

√
2 fπ
3

∫ 1

0
dx

∫ ∞

0
b dbΦ(x, b, ζ21 , t)K0(

√
xQ b)

×
[

1− αs(t)CF

4π

(

3 ln
t2 b

2
√
xQ

+ ln 2 + 2

)]

, (4.8)

with Φ(x, b, ζ21 , t) coming from eqs. (3.22), (3.24), and (3.25).

4.2 Numerical analysis

The first issue in the numerical analysis concerns the choice of the hard characteristic

scale t. One choice would be t2 =
√
xQ/b that removes the remaining logarithm in

eq. (4.8). Another choice characterizing the typical quantum fluctuation of hard scattering

is t = max(
√
xQ, 1/b) as widely adopted in the PQCD approach [6]. In both scenarios the

hard scale runs into the nonperturbative region at small x and large b, but take different

values. We have confirmed that the two scenarios do not generate practical difference in

our formalism for the pion transition form factor. It implies that the joint resummation

has suppressed the contribution from the nonperturbative region effectively. Below we

will adopt the second scenario as the default choice.

Another important issue is the determination of the Gegenbauer moment a2. QCDSR

calculations of moments of the pion wave function can be traced back to 1980s, pioneered

by Chernyak and Zhitnitsky [68], where a rather high value a2(µ) ∼ 0.58 at the scale

µ2 ∈ [1, 2]GeV2 was derived. This estimate was improved gradually by including NLO

QCD corrections and refining the “internal” parameters of the QCDSR approach. The

most recent update gave a2(1GeV) = 0.15 ± 0.03 [69]. Following the strategy of LCSR,

we will not use the Gegenbauer coefficient a2 computed from QCDSR directly. Instead,

we employ the value [62]

a2(1GeV) = 0.17± 0.08 , (4.9)

extracted from matching the LCSR evaluation of the pion electromagnetic form factor,

which includes NLO twist-2 corrections and higher power terms up to twist 6, to the

experimental data from the Jefferson Lab Collaboration.

We start our numerical analysis with the input of the asymptotic pion wave function,

choosing the initial scale µi = 1/b for the RG evolution in eq. (2.32) [6]. As observed from

figure 5(a), the predicted Q2F (Q2) with the conventional resummations at both LO and

NLO levels saturates rapidly as Q2 > 5GeV2, and the NLO QCD correction enhances

the form factor by (6 − 14)%. It is clear that the asymptotic pion distribution generally

accommodates the Belle data except the first two bins. However, it cannot describe the

CLEO and BaBar data in both small and large Q2 region. Note that the incompatibility

between the BaBar and Belle data on the pion transition form factor has been elaborated

quantitatively in [73, 74]. Besides, the impact at low energy of the BaBar and Belle

high-energy data was analyzed by means of the Padé approximation inspired parametriza-

tion in [75]. The joint-resummation effect decreases the LO and NLO predictions in
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Figure 5. Pion transition form factor calculated from (a) the asymptotic model, (b) the flat

model, and (c) the non-asymptotic model. The dashed and dotted (dot-dashed and solid) curves

indicate the LO and NLO predictions from the conventional resummations (joint resummation).

The experimental data are from CLEO [70] (dots), BaBar [71] (triangles), and Belle [72] (squares).
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the conventional approach by (11 − 16)% and (8 − 27)%, respectively. Such decrease

can be understood via the stronger reduction at small x from the joint resummation as

shown in figures 4(b) and 4(d), which is the dominant region owing to the hard kernel

K0(
√
xQ b). It is found that the saturation behavior of Q2F (Q2) changes slightly at NLO

in the joint-resummation improved kT factorization: the NLO correction brings about 6%

suppression (15% enhancement) to the LO result in the small (large) Q2 region. The above

decrease of the NLO form factor at small Q2 is explained as follows. The contribution to

the pion transition form factor under the joint resummation mainly comes from the small

b region as indicated in figure 4. We then have t2b ∼ 1/b >
√
xQ at small Q, for which

the logarithm of the NLO hard kernel in eq. (4.8) flips sign. The failure of describing the

experimental data suggests that the pion wave function might be broader. This observation

is in agreement with the particular feature of the pion as a Nambu-Goldstone boson of

dynamical chiral symmetry breaking and with the recent lattice simulations [57, 58].

The computed pion transition form factor Q2F (Q2) with the flat pion wave function

is exhibited in figure 5(b). It is seen that the form factor grows steadily with Q2 at

LO and NLO in both resummation formalisms. This is easily realized from the scaling

Q2F (Q2) ∼ ln(Q2/k2T ) implied by the tree-level kT factorization formula with the flat pion

wave function [40]. The LO curve from the conventional approach reasonably describes

the scaling violation at large Q2 observed by BaBar and the low Q2 data from CLEO

and Belle. The NLO correction increases the form factor by approximately (15 − 18)%,

such that the agreement with the data deteriorates a bit. Compared to the conventional

approach, the predictions from the joint resummation brings about 17% enhancement and

(8 − 16)% suppression at the LO and NLO levels, respectively. The enhancement at LO,

opposite to what was observed in figure 5(a) for the asymptotic model, arises from the

weaker suppression than the parameterized threshold factor in eq. (4.5) at small x. The

NLO correction becomes destructive under the joint resummation in the whole range of

Q2, decreasing the LO result by (10 − 15)%. This behavior, different from that in the

case of the asymptotic model, is also traced back to the logarithmic term in eq. (4.8):

ln(t2b/(
√
xQ)) remains positive in the small x region, which is probed more by the flat

pion wave function. It is interesting to notice that the NLO curves from the conventional

resummations and from the joint resummation turn out to be similar.

The input of the third model of the pion wave function with a nonvanishing second

Gegenbauer moment a2 leads to Q2F (Q2) displayed in figure 5(c). The form factor under

the conventional resummations behaves in a way similar to that in figure 5(a): Q2F (Q2)

saturates as Q2 > 10GeV2, and the magnitude is larger; namely, it goes between the

BaBar and Belle data. These features are attributed to the broader pion wave function,

which enhances the small-x contribution. Compared to the form factor in the conventional

approach, it shows (4 − 18)% enhancement at LO and (13 − 32)% correction at NLO

under the joint resummation. With the strong suppression at the end point, the major

contribution does not come from small x, but from moderate x, say, 0.1 < x < 0.2. In

this range the pion wave function takes values Φ
I
< Φ

II
< Φ

III
as revealed in figure 3. It

explains why the curves for Q2F (Q2) under the joint resummation ascend fastest with Q2

in figure 5(c), a result not expected from [32–39].
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Figure 6. LO (dot-dashed) and NLO (solid) pion transition form factor calculated from the non-

asymptotic model with the second Gegenbauer moment a2 = 0.05 under the joint resummation.

The above reasoning implies that a pion wave function with two humps, such as

the Chernyak-Zhitnitsky model [68] or the Bakulev-Mikhailov-Stefanis model [76], which

further lift the values in 0.1 < x < 0.2, will overshoot the BaBar data in our formalism. To

improve the description of the data, instead, a smoother pion wave function, lying between

the asymptotic and flat models in the range 0.1 < x < 0.2, serves the purpose as hinted

by figures 5(a) and 5(b). The examples include a non-asymptotic model with a smaller

Gegenbauer moment a2 and a model in eq. (3.17) with a fractional power α < 1. We

present the LO and NLO results for Q2F (Q2) under the joint resummation and the input

of the pion wave function with a2 = 0.052 in figure 6. Fairly speaking, this model wave

function describes reasonably well the CLEO, BaBar, and Belle data in the whole range

of Q2. In summary, the significance of the NLO contribution and the saturation behavior

of the pion transition form factor are quite different under the joint resummation and the

conventional resummations. Therefore, it is important to have appropriate treatment of

QCD logarithmic corrections to a process, before its data are used to extract a hadron

wave function. It is also crucial to clarify the high Q2 data of the pion transition form

factor on the experimental side, in order to acquire better understanding of the hadron

structure and stringent scrutinization of perturbation theory.

To illustrate theoretical uncertainties, we vary the default choice of the hard scale

into t = max(2
√
xQ, 1/b). As shown in figure 7, the scale variation increases the pion

transition form factor in the large Q2 region by approximately 8% and 1% at LO and

NLO, respectively, for the asymptotic pion wave function. On the other hand, tuning the

hard scale magnifies the QCD correction, as large as 7%, to the pion transition form factor

in the flat model. This is certainly not unexpected, taking into account the highlighted

2Such a value of the second Gegenbauer moment still lies in a very conservative bound 0 ≤ a2(1GeV) ≤

0.3 proposed in eq. (9) of [77]. It is, however, smaller than the result determined from lattice QCD [78, 79].

We point out that a2 in the TMD pion wave function needs not to be the same as in the pion LCDA.

For example, a2(1GeV) = 0.0113 has been obtained for the TMD pion wave function from the nonlocal

Nambu-Jona-Lasinio model [80].

– 23 –



J
H
E
P
0
1
(
2
0
1
4
)
0
0
4

ææ

æ
æ
æ

æ

æ
æ

ææ

æ
æ
æ
æ

æ

òò
òò
òò
ò

òò
ò

ò

ò
ò

ò

ò

ò

ò

à
à

àà

à
àà
à
à
à à

à à

à

à

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

Q2
HGeV2

L

Q
2

F
HQ

2 L
HG

eV
L

(a)

ææ

æ
æ
æ

æ

æ
æ

ææ

æ
æ
æ
æ

æ

òò
òò
òò
ò

òò
ò

ò

ò
ò

ò

ò

ò

ò

à
à

àà

à
àà
à
à
à à

à à

à

à

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

Q2
HGeV2

L

Q
2

F
HQ

2
LH

G
eV
L

(b)

ææ

æ
æ
æ

æ

æ
æ

ææ

æ
æ
æ
æ

æ

òò
òò
òò
ò

òò
ò

ò

ò
ò

ò

ò

ò

ò

à
à

àà

à
àà
à
à
à à

à à

à

à

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

Q2
HGeV2

L

Q
2

F
HQ

2 L
HG

eV
L

(c)

Figure 7. Hard scale induced uncertainties of the pion transition form factor for (a) the asymptotic

model, (b) the flat model, and (c) the non-asymptotic model. The (thin) dot-dashed and solid

curves correspond to the LO and NLO predictions, respectively, under the joint resummation with

t = max(
√
xQ, 1/b) (t = max(2

√
xQ, 1/b)).

role of the single logarithm ln(t2 b/(
√
xQ)) in the hard kernel. Similar observation also

holds for the non-asymptotic model with a finite a2, albeit with the NLO correction
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being enhanced to 13% at NLO. The range of the above numerical results are basically

consistent with what was obtained in [73, 74].

5 Conclusion and discussion

Applying the resummation technique with off-light-cone Wilson lines, we have constructed

an evolution equation to resum the mixed logarithm lnx ln(ζ2P /k
2
T ) in the TMD pion wave

function. The joint-resummation improved pion wave function modifies both the longi-

tudinal and transverse momentum distributions. As a consequence, the moderate x and

small b regions are more highlighted compared to the case with the conventional threshold

and kT resummations. We stress that the joint resummation, organizing all the important

logarithms for an arbitrary rapidity parameter in the pion wave function and in the hard

kernel, is a treatment more general than the conventional resummations. In particular,

eq. (4.8) derived in this work represents the first scheme-independent kT factorization

formula for the pion transition form factor in the presence of the light-cone singularity.

We have examined the significance of the NLO contribution and the saturation be-

havior of the pion transition form factor at high energy under the joint resummation.

Differences from those under the conventional resummations were noticed, indicating that

QCD logarithmic corrections to a process must be handled appropriately, before its data

are used to extract a hadron wave function. Our predictions for the pion transition form

factor have been confronted with the measurements from CLEO, BaBar and Belle by test-

ing three models for the pion wave function. The comparison shows that a smooth pion

wave function is favored over a pion wave function with two humps in our formalism. It

turns out that a non-asymptotic pion wave function with a small second Gegenbauer mo-

ment a2 = 0.05 describes reasonably well the CLEO, BaBar, and Belle data in the whole

range of Q2. Resolving the discrepancy between the BaBar and Belle measurements will

definitely improve our understanding towards the hadronic structure of a pion.

Our scheme-independent formalism can be extended to the kT factorization of more

complicated exclusive processes. We will demonstrate this extension taking the pion

electromagnetic form factor as an example. The first step is to verify that the choice of ζ20 ,

with N and b being replaced by N1(2) and b1(2) for the incoming (outgoing) pion, defined in

eq. (2.37) diminishes the large logarithms in the NLO TMD pion wave function in eq. (33)

of [10]. It is indeed the case under the power counting k21T ∼ k22T ∼ x1 x2Q
2, confirming

the universality of a TMD hadron wave function. To eliminate the large logarithms in the

hard kernel given by eq. (35) of [10], we may set

ζ21 = N
−45/8
2 N

1/2
1 , ζ22 = N

−45/8
1 N

1/2
2 ,

which arise from the simultaneous solution to the evolution equations for two TMD pion

wave functions and one hard kernel. We will present the details of the joint-resummation

improved factorization for the pion electromagnetic form factor elsewhere.
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A Explicit expressions of the functions Fi

The functions Fi(λ1, λ2, λ3, λ4, η) (i = 1, 2, 3) appearing in the joint-resummation improved

pion wave function Φ
(I,II,III)

(x, b, ζ21 , t) in eqs. (3.22), (3.24), and (3.25) are defined as

F1(λ1, λ2, λ3, λ4, η)

=
CF

β0

{

λ̂1

[

1

2
ln

(

λ̂2
1+

π2

4

)

−1

]

−π

2
θ1(λ1, η)−λ̂2

[

1

2
ln

(

λ̂2
2+

9π2

4

)

−1

]

− 3π

2
θ2(λ2, η)

−λ̂3

[

1

2
ln

(

λ̂2
3 +

π2

4

)

− 1

]

+
π

2
θ3(λ3, η) + λ̂4

[

1

2
ln

(

λ̂2
4 +

9π2

4

)

− 1

]

+
3π

2
θ4(λ4, η)

−1

4
Li2

(

−e−2 λ̂1

)

+
1

4
Li2

(

−e−2 λ̂2

)

+
1

4
Li2

(

−e−2 λ̂3

)

− 1

4
Li2

(

−e−2 λ̂4

)

}

, (A.1)

F2(λ1, λ2, λ3, λ4, η)

=
CF

β0

{

λ̂1 θ1(λ1, η) +
π

4
ln

(

λ̂2
1 +

π2

4

)

− λ̂2 θ2(λ2, η) +
3π

4
ln

(

λ̂2
2 +

9π2

4

)

−λ̂3 θ3(λ3, η)−
π

4
ln

(

λ̂2
3 +

π2

4

)

+ λ̂4 θ4(λ4, η)−
3π

4
ln

(

λ̂2
4 +

9π2

4

)

+Im
[

Li2

(

ie−λ̂1

)

− Li2

(

ie−λ̂2

)

− Li2

(

ie−λ̂3

)

+ Li2

(

ie−λ̂4

)]

}

. (A.2)

F3(λ1, λ2, λ3, λ4, η)

=
CF

β0

{

λ̂1

(

ln λ̂1 − 1

)

− λ̂2

(

ln λ̂2 − 1

)

− λ̂3

(

ln λ̂3 − 1

)

+ λ̂4

(

ln λ̂4 − 1

)

−Li2

(

e−λ̂1

)

+ Li2

(

e−λ̂2

)

+ Li2

(

e−λ̂3

)

− Li2

(

e−λ̂4

)

}

, (A.3)

with the short-hand notations λ̂i and θi(λi, η)

λ̂1(3) = λ1(3) +
1

2
ln η , λ̂2(4) = λ2(4) −

3

2
ln η ,

θ1(λ1, η) = arctan

(

π

2 λ̂1

)

+ πθ
(

−λ̂1

)

, θ2(λ2, η) = −arctan

(

3π

2 λ̂2

)

− πθ
(

−λ̂2

)

,

θ3(λ3, η) = θ1(λ3, η) , θ4(λ4, η) = θ2(λ4, η) .
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