453 research outputs found

    Adenosine A2A Receptors in Psychopharmacology: Modulators of Behavior, Mood and Cognition

    Get PDF
    The adenosine A2A receptor (A2AR) is in the center of a neuromodulatory network affecting a wide range of neuropsychiatric functions by interacting with and integrating several neurotransmitter systems, especially dopaminergic and glutamatergic neurotransmission. These interactions and integrations occur at multiple levels, including (1) direct receptor- receptor cross-talk at the cell membrane, (2) intracellular second messenger systems, (3) trans-synaptic actions via striatal collaterals or interneurons in the striatum, (4) and interactions at the network level of the basal ganglia. Consequently, A2ARs constitute a novel target to modulate various psychiatric conditions. In the present review we will first summarize the molecular interaction of adenosine receptors with other neurotransmitter systems and then discuss the potential applications of A2AR agonists and antagonists in physiological and pathophysiological conditions, such as psychostimulant action, drug addiction, anxiety, depression, schizophrenia and learning and memory

    Adenosine Actions on Oligodendroglia and Myelination in Autism Spectrum Disorder

    Get PDF
    Autism spectrum disorder (ASD) is the most commonly diagnosed neurodevelopmental disorder. Independent of neuronal dysfunction, ASD and its associated comorbidities have been linked to hypomyelination and oligodendroglial dysfunction. Additionally, the neuromodulator adenosine has been shown to affect certain ASD comorbidities and symptoms, such as epilepsy, impairment of cognitive function, and anxiety. Adenosine is both directly and indirectly responsible for regulating the development of oligodendroglia and myelination through its interaction with, and modulation of, several neurotransmitters, including glutamate, dopamine, and serotonin. In this review, we will focus on the recent discoveries in adenosine interaction with physiological and pathophysiological activities of oligodendroglia and myelination, as well as ASD-related aspects of adenosine actions on neuroprotection and neuroinflammation. Moreover, we will discuss the potential therapeutic value and clinical approaches of adenosine manipulation against hypomyelination in ASD

    Statistical Characteristics of Bed Load Rolling

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive

    Learning to Augment for Data-Scarce Domain BERT Knowledge Distillation

    Full text link
    Despite pre-trained language models such as BERT have achieved appealing performance in a wide range of natural language processing tasks, they are computationally expensive to be deployed in real-time applications. A typical method is to adopt knowledge distillation to compress these large pre-trained models (teacher models) to small student models. However, for a target domain with scarce training data, the teacher can hardly pass useful knowledge to the student, which yields performance degradation for the student models. To tackle this problem, we propose a method to learn to augment for data-scarce domain BERT knowledge distillation, by learning a cross-domain manipulation scheme that automatically augments the target with the help of resource-rich source domains. Specifically, the proposed method generates samples acquired from a stationary distribution near the target data and adopts a reinforced selector to automatically refine the augmentation strategy according to the performance of the student. Extensive experiments demonstrate that the proposed method significantly outperforms state-of-the-art baselines on four different tasks, and for the data-scarce domains, the compressed student models even perform better than the original large teacher model, with much fewer parameters (only ∼13.3%{\sim}13.3\%) when only a few labeled examples available.Comment: AAAI202

    Adenosine Kinase on Deoxyribonucleic Acid Methylation: Adenosine Receptor-Independent Pathway in Cancer Therapy

    Get PDF
    Methylation is an important mechanism contributing to cancer pathology. Methylation of tumor suppressor genes and oncogenes has been closely associated with tumor occurrence and development. New insights regarding the potential role of the adenosine receptor-independent pathway in the epigenetic modulation of DNA methylation offer the possibility of new interventional strategies for cancer therapy. Targeting DNA methylation of cancer-related genes is a promising therapeutic strategy; drugs like 5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine) effectively reverse DNA methylation and cancer cell growth. However, current anti-methylation (or methylation modifiers) are associated with severe side effects; thus, there is an urgent need for safer and more specific inhibitors of DNA methylation (or DNA methylation modifiers). The adenosine signaling pathway is reported to be involved in cancer pathology and participates in the development of tumors by altering DNA methylation. Most recently, an adenosine metabolic clearance enzyme, adenosine kinase (ADK), has been shown to influence methylation on tumor suppressor genes and tumor development and progression. This review article focuses on recent updates on ADK and its two isoforms, and its actions in adenosine receptor-independent pathways, including methylation modification and epigenetic changes in cancer pathology

    Active Relation Discovery: Towards General and Label-aware Open Relation Extraction

    Full text link
    Open Relation Extraction (OpenRE) aims to discover novel relations from open domains. Previous OpenRE methods mainly suffer from two problems: (1) Insufficient capacity to discriminate between known and novel relations. When extending conventional test settings to a more general setting where test data might also come from seen classes, existing approaches have a significant performance decline. (2) Secondary labeling must be performed before practical application. Existing methods cannot label human-readable and meaningful types for novel relations, which is urgently required by the downstream tasks. To address these issues, we propose the Active Relation Discovery (ARD) framework, which utilizes relational outlier detection for discriminating known and novel relations and involves active learning for labeling novel relations. Extensive experiments on three real-world datasets show that ARD significantly outperforms previous state-of-the-art methods on both conventional and our proposed general OpenRE settings. The source code and datasets will be available for reproducibility.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Bidirectional End-to-End Learning of Retriever-Reader Paradigm for Entity Linking

    Full text link
    Entity Linking (EL) is a fundamental task for Information Extraction and Knowledge Graphs. The general form of EL (i.e., end-to-end EL) aims to first find mentions in the given input document and then link the mentions to corresponding entities in a specific knowledge base. Recently, the paradigm of retriever-reader promotes the progress of end-to-end EL, benefiting from the advantages of dense entity retrieval and machine reading comprehension. However, the existing study only trains the retriever and the reader separately in a pipeline manner, which ignores the benefit that the interaction between the retriever and the reader can bring to the task. To advance the retriever-reader paradigm to perform more perfectly on end-to-end EL, we propose BEER2^2, a Bidirectional End-to-End training framework for Retriever and Reader. Through our designed bidirectional end-to-end training, BEER2^2 guides the retriever and the reader to learn from each other, make progress together, and ultimately improve EL performance. Extensive experiments on benchmarks of multiple domains demonstrate the effectiveness of our proposed BEER2^2.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Towards All-around Knowledge Transferring: Learning From Task-irrelevant Labels

    Full text link
    Deep neural models have hitherto achieved significant performances on numerous classification tasks, but meanwhile require sufficient manually annotated data. Since it is extremely time-consuming and expensive to annotate adequate data for each classification task, learning an empirically effective model with generalization on small dataset has received increased attention. Existing efforts mainly focus on transferring task-relevant knowledge from other similar data to tackle the issue. These approaches have yielded remarkable improvements, yet neglecting the fact that the task-irrelevant features could bring out massive negative transfer effects. To date, no large-scale studies have been performed to investigate the impact of task-irrelevant features, let alone the utilization of this kind of features. In this paper, we firstly propose Task-Irrelevant Transfer Learning (TIRTL) to exploit task-irrelevant features, which mainly are extracted from task-irrelevant labels. Particularly, we suppress the expression of task-irrelevant information and facilitate the learning process of classification. We also provide a theoretical explanation of our method. In addition, TIRTL does not conflict with those that have previously exploited task-relevant knowledge and can be well combined to enable the simultaneous utilization of task-relevant and task-irrelevant features for the first time. In order to verify the effectiveness of our theory and method, we conduct extensive experiments on facial expression recognition and digit recognition tasks. Our source code will be also available in the future for reproducibility

    Superconductivity at 22.3 K in SrFe2-xIrxAs2

    Full text link
    By substituting the Fe with the 5d-transition metal Ir in SrFe2As2, we have successfully synthesized the superconductor SrFe2-xIrxAs2 with Tc = 22.3 K at x = 0.5. X-ray diffraction indicates that the material has formed the ThCr2Si2-type structure with a space group I4/mmm. The temperature dependence of resistivity and dc magnetization both reveal sharp superconducting transitions at around 22 K. An estimate on the diamagnetization signal reveals a high Meissner shielding volume. Interestingly, the normal state resistivity exhibits a roughly linear behavior up to 300 K. The superconducting transitions at different magnetic fields were also measured yielding a slope of -dHc2/dT = 3.8 T/K near Tc. Using the Werthamer-Helfand-Hohenberg (WHH) formula, the upper critical field at zero K is found to be about 58 T. Counting the possible number of electrons doped into the system in SrFe2-xIrxAs2, we argue that the superconductivity in the Ir-doped system is different from the Co-doped case, which should add more ingredients to the underlying physics of the iron pnictide superconductors.Comment: 4 pages, 4 figure
    • …
    corecore