50,888 research outputs found
Recommended from our members
On nonlinear H∞ filtering for discrete-time stochastic systems with missing measurements
Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the H∞ filtering problem is investigated for a general class of nonlinear discrete-time stochastic systems with missing measurements. The system under study is not only corrupted by state-dependent white noises but also disturbed by exogenous inputs. The measurement output contains randomly missing data that is modeled by a Bernoulli distributed white sequence with a known conditional probability. A filter of very general form is first designed such that the filtering process is stochastically stable and the filtering error satisfies H infin performance constraint for all admissible missing observations and nonzero exogenous disturbances under the zero-initial condition. The existence conditions of the desired filter are described in terms of a second-order nonlinear inequality. Such an inequality can be decoupled into some auxiliary ones that can be solved independently by taking special form of the Lyapunov functionals. As a consequence, a linear time-invariant filter design problem is discussed for the benefit of practical applications, and some simplified conditions are obtained. Finally, two numerical simulation examples are given to illustrate the main results of this paper
Quantized H-Infinity control for nonlinear stochastic time-delay systems with missing measurements
This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, the quantized H∞ control problem is investigated for a class of nonlinear stochastic time-delay network-based systems with probabilistic data missing. A nonlinear stochastic system with state delays is employed to model the networked control systems where the measured output and the input signals are quantized by two logarithmic quantizers, respectively. Moreover, the data missing phenomena are modeled by introducing a diagonal matrix composed of Bernoulli distributed stochastic variables taking values of 1 and 0, which describes that the data from different sensors may be lost with different missing probabilities. Subsequently, a sufficient condition is first derived in virtue of the method of sector-bounded uncertainties, which guarantees that the closed-loop system is stochastically stable and the controlled output satisfies H∞ performance constraint for all nonzero exogenous disturbances under the zero-initial condition. Then, the sufficient condition is decoupled into some inequalities for the convenience of practical verification. Based on that, quantized H∞ controllers are designed successfully for some special classes of nonlinear stochastic time-delay systems by using Matlab linear matrix inequality toolbox. Finally, a numerical simulation example is exploited to show the effectiveness and applicability of the results derived.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Leverhulme Trust of the U.K., the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 61028008, 61134009, 61104125, 60974030, and 61074016, and the Alexander von Humboldt Foundation of Germany
Unambiguous Acquisition and Tracking Technique for General BOC Signals
This article presents a new unambiguous acquisition and tracking technique for general Binary Offset Carrier (BOC) ranging signals, which will be used in modern GPS, European Galileo system and Chinese BeiDou system. The test criterion employed in this technique is based on a synthesized correlation function which completely removes positive side peaks while keeping the sharp main peak. Simulation results indicate that the proposed technique completely removes the ambiguity threat in the acquisition process while maintaining relatively higher acquisition performance for low order BOC signals. The potential false lock points in the tracking phase for any order BOC signals are avoided by using the proposed method. Impacts of thermal noise and multipath on the proposed technique are investigated; the simulation results show that the new method allows the removal of false lock points with slightly degraded tracking performance. In addition, this method is convenient to implement via logic circuits
Neutron star matter in the quark-meson coupling model in strong magnetic fields
The effects of strong magnetic fields on neutron star matter are investigated
in the quark-meson coupling (QMC) model. The QMC model describes a nuclear
many-body system as nonoverlapping MIT bags in which quarks interact through
self-consistent exchange of scalar and vector mesons in the mean-field
approximation. The results of the QMC model are compared with those obtained in
a relativistic mean-field (RMF) model. It is found that quantitative
differences exist between the QMC and RMF models, while qualitative trends of
the magnetic field effects on the equation of state and composition of neutron
star matter are very similar.Comment: 16 pages, 4 figure
Highly scalable, low-complexity image coding using zeroblocks of wavelet coefficients
© 2005 IEEE.We propose a new highly scalable wavelet transform-based image coder, called S-SPECK, on the extension of a well-known zero-block image coder SPECK, by achieving not only distortion scalability, resolution scalability, and region of interest (ROI) retrievability, but also excellent compression performance with very low computational complexity. Though new features have been introduced into S-SPECK, our coder is quite competitive with SPECK on compression performance (peak signal-to-noise ratio) and computational complexity (encoding and decoding times) at various bit rates for standard test images. A novel quality layer formatting method is implemented in S-SPECK, which is much simpler and faster than PCRD used in JPEG2000. Extensive experiments have verified all our claims for S-SPECK.Gui Xie, Hong She
Measurement of a Sign-Changing Two-Gap Superconducting Phase in Electron-Doped Ba(Fe_{1-x}Co_x)_2As_2 Single Crystals using Scanning Tunneling Spectroscopy
Scanning tunneling spectroscopic studies of (x =
0.06, 0.12) single crystals reveal direct evidence for predominantly two-gap
superconductivity. These gaps decrease with increasing temperature and vanish
above the superconducting transition . The two-gap nature and the slightly
doping- and energy-dependent quasiparticle scattering interferences near the
wave-vectors and are consistent with
sign-changing -wave superconductivity. The excess zero-bias conductance and
the large gap-to- ratios suggest dominant unitary impurity scattering.Comment: 4 pages, 4 figures. Paper accepted for publication in Physical Review
Letters. Contact author: Nai-Chang Yeh ([email protected]
Using spin bias to manipulate and measure quantum spin in quantum dots
A double-quantum-dot coupled to electrodes with spin-dependent splitting of
chemical potentials (spin bias) is investigated theoretically by means of the
Green's functions formalism. By applying a large spin bias, the quantum spin in
a quantum dot (the dot 1) can be manipulated in a fully electrical manner. To
noninvasively monitor the manipulation of the quantum spin in the dot 1, it is
proposed that the second quantum dot (the dot 2) is weakly coupled to the dot
1. In the presence of the exchange interaction between the two dots, the
polarized spin in the dot 1 behaves like an effective magnetic field and weakly
polarizes the spin in the nearby quantum dot 2. By applying a very small spin
bias to the dot 2, the spin-dependent transport through the dot 2 can be
probed, allowing the spin polarization in the dot 1 to be identified
nondestructively. These two steps form a complete scheme to manipulate a
trapped spin while permitting this manipulation to be monitored in the
double-dot system using pure electric approaches
- …