193 research outputs found

    Coherence retrieval using trace regularization

    Full text link
    The mutual intensity and its equivalent phase-space representations quantify an optical field's state of coherence and are important tools in the study of light propagation and dynamics, but they can only be estimated indirectly from measurements through a process called coherence retrieval, otherwise known as phase-space tomography. As practical considerations often rule out the availability of a complete set of measurements, coherence retrieval is usually a challenging high-dimensional ill-posed inverse problem. In this paper, we propose a trace-regularized optimization model for coherence retrieval and a provably-convergent adaptive accelerated proximal gradient algorithm for solving the resulting problem. Applying our model and algorithm to both simulated and experimental data, we demonstrate an improvement in reconstruction quality over previous models as well as an increase in convergence speed compared to existing first-order methods.Comment: 28 pages, 10 figures, accepted for publication in SIAM Journal on Imaging Science

    Why does the apparent mass of a coronal mass ejection increase?

    Full text link
    Mass is one of the most fundamental parameters characterizing the dynamics of a coronal mass ejection (CME). It has been found that CME apparent mass measured from the brightness enhancement in coronagraph images shows an increasing trend during its evolution in the corona. However, the physics behind it is not clear. Does the apparent mass gain come from the mass outflow from the dimming regions in the low corona, or from the pileup of the solar wind plasma around the CME when it propagates outwards from the Sun? We analyzed the mass evolution of six CME events. Their mass can increase by a factor of 1.6 to 3.2 from 4 to 15 Rs in the field of view (FOV) of the coronagraph on board the Solar Terrestrial Relations Observatory (STEREO). Over the distance about 7 to 15 Rs, where the coronagraph occulting effect can be negligible, the mass can increase by a factor of 1.3 to 1.7. We adopted the `snow-plough' model to calculate the mass contribution of the piled-up solar wind in the height range from about 7 to 15 Rs. For 2/3 of the events, the solar wind pileup is not sufficient to explain the measured mass increase. In the height range from about 7 to 15 Rs, the ratio of the modeled to the measured mass increase is roughly larger than 0.55. Although the ratios are believed to be overestimated, the result gives evidence that the solar wind pileup probably makes a non-negligible contribution to the mass increase. It is not clear yet whether the solar wind pileup is a major contributor to the final mass derived from coronagraph observations. However, our study suggests that the solar wind pileup plays increasingly important role in the mass increase as a CME moves further away from the Sun.Comment: 27 pages, 2 tables, 9 figures, accepted by Ap
    • …
    corecore