7,781 research outputs found

    Topological Band Theory for Non-Hermitian Hamiltonians

    Full text link
    We develop the topological band theory for systems described by non-Hermitian Hamiltonians, whose energy spectra are generally complex. After generalizing the notion of gapped band structures to the non-Hermitian case, we classify "gapped" bands in one and two dimensions by explicitly finding their topological invariants. We find nontrivial generalizations of the Chern number in two dimensions, and a new classification in one dimension, whose topology is determined by the energy dispersion rather than the energy eigenstates. We then study the bulk-edge correspondence and the topological phase transition in two dimensions. Different from the Hermitian case, the transition generically involves an extended intermediate phase with complex-energy band degeneracies at isolated "exceptional points" in momentum space. We also systematically classify all types of band degeneracies.Comment: 6 pages, 3 figures + 6 pages of supplemental materia

    Totally Corrective Multiclass Boosting with Binary Weak Learners

    Full text link
    In this work, we propose a new optimization framework for multiclass boosting learning. In the literature, AdaBoost.MO and AdaBoost.ECC are the two successful multiclass boosting algorithms, which can use binary weak learners. We explicitly derive these two algorithms' Lagrange dual problems based on their regularized loss functions. We show that the Lagrange dual formulations enable us to design totally-corrective multiclass algorithms by using the primal-dual optimization technique. Experiments on benchmark data sets suggest that our multiclass boosting can achieve a comparable generalization capability with state-of-the-art, but the convergence speed is much faster than stage-wise gradient descent boosting. In other words, the new totally corrective algorithms can maximize the margin more aggressively.Comment: 11 page

    Real-time systems for moving objects detection and tracking using pixel difference method.

    Get PDF

    A QoS-Aware Scheduling Algorithm for High-Speed Railway Communication System

    Full text link
    With the rapid development of high-speed railway (HSR), how to provide the passengers with multimedia services has attracted increasing attention. A key issue is to develop an effective scheduling algorithm for multiple services with different quality of service (QoS) requirements. In this paper, we investigate the downlink service scheduling problem in HSR network taking account of end-to-end deadline constraints and successfully packet delivery ratio requirements. Firstly, by exploiting the deterministic high-speed train trajectory, we present a time-distance mapping in order to obtain the highly dynamic link capacity effectively. Next, a novel service model is developed for deadline constrained services with delivery ratio requirements, which enables us to turn the delivery ratio requirement into a single queue stability problem. Based on the Lyapunov drift, the optimal scheduling problem is formulated and the corresponding scheduling service algorithm is proposed by stochastic network optimization approach. Simulation results show that the proposed algorithm outperforms the conventional schemes in terms of QoS requirements.Comment: 6 pages, 3 figures, accepted by IEEE ICC 2014 conferenc

    Linear magnetoconductivity in an intrinsic topological Weyl semimetal

    Get PDF
    Searching for the signature of the violation of chiral charge conservation in solids has inspired a growing passion on the magneto-transport in topological semimetals. One of the open questions is how the conductivity depends on magnetic fields in a semimetal phase when the Fermi energy crosses the Weyl nodes. Here, we study both the longitudinal and transverse magnetoconductivity of a topological Weyl semimetal near the Weyl nodes with the help of a two-node model that includes all the topological semimetal properties. In the semimetal phase, the Fermi energy crosses only the 0th Landau bands in magnetic fields. For a finite potential range of impurities, it is found that both the longitudinal and transverse magnetoconductivity are positive and linear at the Weyl nodes, leading to an anisotropic and negative magnetoresistivity. The longitudinal magnetoconductivity depends on the potential range of impurities. The longitudinal conductivity remains finite at zero field, even though the density of states vanishes at the Weyl nodes. This work establishes a relation between the linear magnetoconductivity and the intrinsic topological Weyl semimetal phase.Comment: An extended version accepted by New. J. Phys. with 15 pages and 3 figure

    Edge states and integer quantum Hall effect in topological insulator thin films

    Get PDF
    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.Comment: 10 pages, 5 figure
    • …
    corecore