442 research outputs found

    Summary of Fermilab's Recycler Electron Cooler Operation and Studies

    Get PDF
    Fermilab's Recycler ring was used as a storage ring for accumulation and subsequent manipulations of 8-GeV antiprotons destined for the Tevatron collider. To satisfy these missions, a unique electron cooling system was designed, developed and successfully implemented. The most important features that distinguish the Recycler cooler from other existing electron coolers are its relativistic energy (it employs a 4.3 MeV, 0.1 A DC electron beam), a weak continuous longitudinal magnetic field in the cooling section (~100 G), and lumped focusing elsewhere. With the termination of the collider operation at Fermilab, the cooler operation was also terminated. In this article, we will summarize the experience of commissioning, optimizing and running this unique machine over the 6 years of its existence.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012. New Orleans, Louisian

    Transverse instability of the antiproton beam in the Recycler Ring

    Get PDF
    The brightness of the antiproton beam in Fermilab's 8 GeV Recycler ring is limited by a transverse instability. This instability has occurred during the extraction process to the Tevatron for large stacks of antiprotons even with dampers in operation. This paper describes observed features of the instability, introduces the threshold phase density to characterize the beam stability, and finds the results to be in agreement with a resistive wall instability model. Effective exclusion of the longitudinal tails from Landau damping by decreasing the depth of the RF potential well is observed to lower the threshold density by up to a factor of two.Comment: 3 pp. Particle Accelerator, 24th Conference (PAC'11) 2011. 28 Mar - 1 Apr 2011. New York, US

    Progress with PXIE MEBT Chopper

    Get PDF
    A capability to provide a large variety of bunch patterns is crucial for the concept of the Project X serving MW-range beam to several experiments simultaneously. This capability will be realized by the Medium Energy Beam Transport's (MEBT) chopping system that will divert 80% of all bunches of the initially 5mA, 2.1 MeV CW 162.5 MHz beam to an absorber according to a pre-programmed bunch-by-bunch selection. Being considered one of the most challenging components, the chopping system will be tested at the Project X Injector Experiment (PXIE) facility that will be built at Fermilab as a prototype of the Project X front end. The bunch deflection will be made by two identical sets of travelling-wave kickers working in sync. Currently, two versions of the kickers are being investigated: a helical 200 Ohm structure with a switching-type 500 V driver and a planar 50 Ohm structure with a linear 250 V amplifier. This paper will describe the chopping system scheme and functional specifications for the kickers, present results of electromagnetic measurements of the models, discuss possible driver schemes, and show a conceptual mechanical design.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012. New Orleans, Louisian

    "Hollow cathode" gun optics

    Get PDF
    The generation of an electron beam by a hollow cathode gun in a cusp magnetic field is discussed. Such a gun is proposed for an electron cooling device without toroids. In a section with a homogeneous magnetic field, this beam experiences a disturbance region near the axis where the electron temperature becomes higher. The main purpose of the article is to define conditions for generating the beam so as to restrict the extent of this region as much as possible. It is shown that a state with a virtual cathode in the vicinity of the zero magnetic field point is the most suitable for this aim. The experimental and essential analytical results are presented
    • …
    corecore