9 research outputs found

    Environmental Assessment and Blood Lead Levels of Children in Owino Uhuru and Bangladesh Settlements in Kenya

    No full text
    Background. Lead exposure is linked to intellectual disability and anemia in children. The United States Centers for Disease Control and Prevention (CDC) recommends biomonitoring of blood lead levels (BLLs) in children with BLL ≥5 μg/dL and chelation therapy for those with BLL ≥45 μg/dL. Objectives. This study aimed to determine blood and environmental lead levels and risk factors associated with elevated BLL among children from Owino Uhuru and Bangladesh settlements in Mombasa County, Kenya. Methods. The present study is a population-based, cross-sectional study of children aged 12–59 months randomly selected from households in two neighboring settlements, Owino Uhuru, which has a lead smelter, and Bangladesh settlement (no smelter). Structured questionnaires were administered to parents and 1–3 ml venous blood drawn from each child was tested for lead using a LeadCare ® II portable analyzer. Environmental samples collected from half of the sampled households were tested for lead using graphite furnace atomic absorption spectroscopy. Results: We enrolled 130 children, 65 from each settlement. Fifty-nine (45%) were males and the median age was 39 months (interquartile range (IQR): 30–52 months). BLLs ranged from 1 μg/dL to 31 μg/dL, with 45 (69%) children from Owino Uhuru and 18 (28%) children from Bangladesh settlement with BLLs >5 μg/dL. For Owino Uhuru, the geometric mean BLL in children was 7.4 μg/dL (geometric standard deviation (GSD); 1.9) compared to 3.7 μg/dL (GSD: 1.9) in Bangladesh settlement (p<0.05). The geometric mean lead concentration of soil samples from Owino Uhuru was 146.5 mg/Kg (GSD: 5.2) and 11.5 mg/Kg (GSD: 3.9) (p<0.001) in Bangladesh settlement. Children who resided <200 m from the lead smelter were more likely to have a BLL ≥5 μg/dL than children residing ≥200 m from the lead smelter (adjusted odds ratio (aOR): 33.6 (95% confidence interval (CI): 7.4–153.3). Males were also more likely than females to have a BLL ≥5 μg/dL (39, 62%) compared to a BLL<5 μg/dL [aOR: 2.4 (95% CI: 1.0–5.5)]. Conclusions. Children in Owino Uhuru had significantly higher BLLs compared with children in Bangladesh settlement. Interventions to diminish continued exposure to lead in the settlement should be undertaken. Continued monitoring of levels in children with detectable levels can evaluate whether interventions to reduce exposure are effective. Participant Consent. Obtained Ethics Approval. Scientific approval for the study was obtained from the Ministry of Health, lead poisoning technical working group. Since this investigation was considered a public health response of immediate concern, expedited ethical approval was obtained from the Kenya Medical Research Institute and further approval from the Mombasa County Department of Health Services. The investigation was considered a non-research public health response activity by the CDC. Competing Interests. The authors declare no competing financial interests

    A household serosurvey to estimate the magnitude of a dengue outbreak in Mombasa, Kenya, 2013.

    No full text
    Dengue appears to be endemic in Africa with a number of reported outbreaks. In February 2013, several individuals with dengue-like illnesses and negative malaria blood smears were identified in Mombasa, Kenya. Dengue was laboratory confirmed and an investigation was conducted to estimate the magnitude of local transmission including a serologic survey to determine incident dengue virus (DENV) infections. Consenting household members provided serum and were questioned regarding exposures and medical history. RT-PCR was used to identify current DENV infections and IgM anti-DENV ELISA to identify recent infections. Of 1,500 participants from 701 households, 210 (13%) had evidence of current or recent DENV infection. Among those infected, 93 (44%) reported fever in the past month. Most (68, 73%) febrile infected participants were seen by a clinician and all but one of 32 participants who reportedly received a diagnosis were clinically diagnosed as having malaria. Having open windows at night (OR = 2.3; CI: 1.1-4.8), not using daily mosquito repellent (OR = 1.6; CI: 1.0-2.8), and recent travel outside of Kenya (OR = 2.5; CI: 1.1-5.4) were associated with increased risk of DENV infection. This survey provided a robust measure of incident DENV infections in a setting where cases were often unrecognized and misdiagnosed

    Risk factors associated with dengue virus infections (DENV) among residents of Tudor, Mombasa, Kenya, May 2013.

    No full text
    <p>* Weighted percentages are reported, reflecting the stratified sampling design. Responses were weighted to account for the different probabilities of household inclusion across strata, within-household participation rates, and inter-household clustering of infections.</p><p>** Significance level, p = 0.05. Weighted logistic regression models were used to assess risk factors for recent or current infections, and CIs were based on the modeling accounted for the sampling design. Breeding containers queried included potted plants, vegetation, wells, septic tanks, trash, buckets, water cisterns, fountains, old tires, water storage tank without lids.</p><p>Risk factors associated with dengue virus infections (DENV) among residents of Tudor, Mombasa, Kenya, May 2013.</p

    An optimization of four SARS-CoV-2 qRT-PCR assays in a Kenyan laboratory to support the national COVID-19 rapid response teams

    Get PDF
    Background: The COVID-19 pandemic relies on real-time polymerase chain reaction (qRT-PCR) for the detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to facilitate roll-out of patient care and infection control measures. There are several qRT-PCR assays with little evidence on their comparability. We report alterations to the developers’ recommendations to sustain the testing capability in a resource-limited setting. Methods: We used a SARS-CoV-2 positive control RNA sample to generate several 10-fold dilution series that were used for optimization and comparison of the performance of the four qRT-PCR assays: i) Charité Berlin primer-probe set, ii) European Virus Archive – GLOBAL (EVAg) primer-probe set, iii) DAAN premixed commercial kit and iv) Beijing Genomics Institute (BGI) premixed commercial kit. We adjusted the manufacturer- and protocol-recommended reaction component volumes for these assays and assessed the impact on cycle threshold (Ct) values. Results: The Berlin and EVAg E gene and RdRp assays reported mean Ct values within range of each other across the different titrations and with less than 5% difference. The DAAN premixed kit produced comparable Ct values across the titrations, while the BGI kit improved in performance following a reduction of the reaction components. Conclusion: We achieved a 2.6-fold and 4-fold increase in the number of tests per kit for the commercial kits and the primer-probe sets, respectively. All the assays had optimal performance when the primers and probes were used at 0.375X, except for the Berlin N gene assay. The DAAN kit was a reliable assay for primary screening of SARS-CoV-2 whereas the BGI kit’s performance was dependent on the volumes and concentrations of both the reaction buffer and enzyme mix. Our recommendation for SARS-CoV-2 diagnostic testing in resource-limited settings is to optimize the assays available to establish the lowest volume and suitable concentration of reagents required to produce valid results
    corecore