5 research outputs found

    Simulation of Surface Ozone Pollution in the Central Gulf Coast Region Using WRF/Chem Model: Sensitivity to PBL and Land Surface Physics

    Get PDF
    The fully coupled WRF/Chem (Weather Research and Forecasting/Chemistry) model is used to simulate air quality in the Mississippi Gulf coastal region at a high resolution (4 km) for a moderately severe summer ozone episode between 18 CST 7 and 18 CST 10 June 2006. The model sensitivity is studied for meteorological and gaseous criteria pollutants (O3, NO2) using three Planetary Boundary Layer (PBL) and four land surface model (LSM) schemes and comparison of model results with monitoring station observations. Results indicated that a few combinations of PBL and LSMs could reasonably produce realistic meteorological fields and that the combination of Yonsei University (YSU) PBL and NOAH LSM provides best predictions for winds, temperature, humidity and mixed layer depth in the study region for the period of study. The diurnal range in ozone concentration is better estimated by the YSU PBL in association with either 5-layer or NOAH land surface model. The model seems to underestimate the ozone concentrations in the study domain because of underestimation of temperatures and overestimation of winds. The underestimation of NO2 by model suggests the necessity of examining the emission data in respect of its accurate representation at model resolution. Quantitative analysis for most monitoring stations indicates that the combination of YSU PBL with NOAH LSM provides the best results for various chemical species with minimum BIAS, RMSE, and high correlation values

    Air Quality Modeling for the Urban Jackson, Mississippi Region Using a High Resolution WRF/Chem Model

    Get PDF
    In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi) region using an online WRF/Chem (Weather Research and Forecasting–Chemistry) model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators

    Simulation of Atmospheric Dispersion of Elevated Releases from Point Sources in Mississippi Gulf Coast with Different Meteorological Data

    Get PDF
    Atmospheric dispersion calculations are made using the HYSPLIT Particle Dispersion Model for studying the transport and dispersion of air-borne releases from point elevated sources in the Mississippi Gulf coastal region. Simulations are performed separately with three meteorological data sets having different spatial and temporal resolution for a typical summer period in 1-3 June 2006 representing a weak synoptic condition. The first two data are the NCEP global and regional analyses (FNL, EDAS) while the third is a meso-scale simulation generated using the Weather Research and Forecasting model with nested domains at a fine resolution of 4 km. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of the combined influences of the land-sea breeze circulation, the large scale flow field and diurnal alteration in the mixing depth across the coast. The model predicted SO2 concentrations showed that the trajectory and the concentration distribution varied in the three cases of input data. While calculations with FNL data show an overall higher correlation, there is a significant positive bias during daytime and negative bias during night time. Calculations with EDAS fields are significantly below the observations during both daytime and night time though plume behavior follows the coastal circulation. The diurnal plume behavior and its distribution are better simulated using the mesoscale WRF meteorological fields in the coastal environment suggesting its suitability for pollution dispersion impact assessment in the local scale. Results of different cases of simulation, comparison with observations, correlation and bias in each case are presented
    corecore