3,601 research outputs found

    Operating manual for the RRL 8 channel data logger

    Get PDF
    A data collection device which takes measurements from external sensors at user specified time intervals is described. Three sensor ports are dedicated to temperature, air pressure, and dew point. Five general purpose sensor ports are provided. The user specifies when the measurements are recorded as well as when the information is read or stored in a minicomputer or a paper tape

    One-dimensional spin-liquid without magnon excitations

    Full text link
    It is shown that a sufficiently strong four-spin interaction in the spin-1/2 spin ladder can cause dimerization. Such interaction can be generated either by phonons or (in the doped state) by the conventional Coulomb repulsion between the holes. The dimerized phases are thermodynamically undistinguishable from the Haldane phase, but have dramatically different correlation functions: the dynamical magnetic susceptibility, instead of displaying a sharp single magnon peak near q=Ď€q = \pi, shows only a two-particle threshold separated from the ground state by a gap.Comment: 9 pages, LaTex, to be published in Phys. Rev. Lett., vol. 78, May 199

    An Effective Theory for Midgap States in Doped Spin Ladder and Spin-Peierls Systems: Liouville Quantum Mechanics

    Full text link
    In gapped spin ladder and spin-Peierls systems the introduction of disorder, for example by doping, leads to the appearance of low energy midgap states. The fact that these strongly correlated systems can be mapped onto one dimensional noninteracting fermions provides a rare opportunity to explore systems which have both strong interactions and disorder. In this paper we show that the statistics of the zero energy midgap wave functions in these models can be effectively described by Liouville Quantum Mechanics. This enables us to calculate the disorder averaged N-point correlation functions of these states (the explicit calculation is performed for N=2,3). We find that whilst these midgap states are typically weakly correlated, their disorder averaged correlation are power law. This discrepancy arises because the correlations are not self-averaging and averages of the wave functions are dominated by anomalously strongly correlated configurations.Comment: 13 page latex fil

    Physical Electronics

    Get PDF
    Contains reports on three research projects

    Physical Electronics

    Get PDF
    Contains reports on four research projects

    An Inversion Disrupting FAM134B Is Associated with Sensory Neuropathy in the Border Collie Dog Breed

    Get PDF
    Sensory neuropathy in the Border Collie is a severe neurological disorder caused by the degeneration of sensory and, to a lesser extent, motor nerve cells with clinical signs starting between 2 and 7 months of age. Using a genome-wide association study approach with three cases and 170 breed matched controls, a suggestive locus for sensory neuropathy was identified that was followed up using a genome sequencing approach. An inversion disrupting the candidate gene FAM134B was identified. Genotyping of additional cases and controls and RNAseq analysis provided strong evidence that the inversion is causal. Evidence of cryptic splicing resulting in novel exon transcription for FAM134B was identified by RNAseq experiments. This investigation demonstrates the identification of a novel sensory neuropathy associated mutation, by mapping using a minimal set of cases and subsequent genome sequencing. Through mutation screening, it should be possible to reduce the frequency of or completely eliminate this debilitating condition from the Border Collie breed population

    Renormalized SO(5) symmetry in ladders with next-nearest-neighbor hopping

    Full text link
    We study the occurrence of SO(5) symmetry in the low-energy sector of two-chain Hubbard-like systems by analyzing the flow of the running couplings (gg-ology) under renormalization group in the weak-interaction limit. It is shown that SO(5) is asymptotically restored for low energies for rather general parameters of the bare Hamiltonian. This holds also with inclusion of a next-nearest-neighbor hopping which explicitly breaks particle-hole symmetry provided one accounts for a different single-particle weight for the quasiparticles of the two bands of the system. The physical significance of this renormalized SO(5) symmetry is discussed.Comment: Final version: to appear in Phys. Rev. Lett., sched. Mar. 9

    Conductivity of Doped Two-Leg Ladders

    Full text link
    Recently, conductivity measurements were performed on the hole-doped two-leg ladder material Sr_{14-x}Ca_xCu_{24}O_{41}. In this work, we calculate the conductivity for doped two-leg ladders using a model of hole-pairs forming a strongly correlated liquid - a single component Luttinger liquid - in the presence of disorder. Quantum interference effects are handled using renormalization group methods. We find that our model can account for the low energy features of the experimental results. However, at higher energies the experiments show deviations from the predictions of this model. Using the results of our calculations as well as results on the ground state of doped two-leg ladders, we suggest a scenario to account for the higher energy features of the experimental results.Comment: 5 pages, 3 postscript figure

    Coulomb Blockade Regime of a Single-Wall Nanotube

    Full text link
    A model of carbon nanotube at half filling is studied. The Coulomb interaction is assumed to be unscreened. It is shown that this allows to develop the adiabatic approximation which leads to considerable simplifications in calculations of the excitation spectrum. We give a detailed analysis of the spectrum and the phase diagram at half filling and discuss effects of small doping. At small doping several phases develop strong superconducting fluctuations corresponding to various types of pairing
    • …
    corecore