103 research outputs found

    Neonatal brain MRI and short-term outcomes after acute provoked seizures

    Get PDF
    OBJECTIVE: We investigated how diagnosis and injury location on neonatal brain MRI following onset of acute provoked seizures was associated with short term outcome. STUDY DESIGN: A multicenter cohort of neonates with acute provoked seizures enrolled in the Neonatal Seizure Registry. MRIs were centrally evaluated by a neuroradiologist for location of injury and radiologic diagnosis. Clinical outcomes were determined by chart review. Multivariate logistic regression was used to examine the association between MRI findings and outcomes. RESULTS: Among 236 newborns with MRI at median age 4 days (IQR 3-8), 91% had abnormal MRI. Radiologic diagnoses of intracranial hemorrhage (OR 3.2 [1.6-6.5], p \u3c 0.001) and hypoxic-ischemic encephalopathy (OR 2.7 [1.4-5.4], p \u3c 0.003) were associated with high seizure burden. Radiologic signs of intracranial infection were associated with abnormal neurologic examination at discharge (OR 3.9 [1.3-11.6], p \u3c 0.01). CONCLUSION: Findings on initial MRI can help with expectant counseling on short-term outcomes following acute provoked neonatal seizures

    Sleep‐disordered breathing is common among term and near term infants in the NICU

    Full text link
    ObjectiveAmong older infants and children, sleep‐disordered breathing (SDB) has negative neurocognitive consequences. We evaluated the frequency and potential impact of SDB among newborns who require intensive care.Study DesignTerm and near‐term newborns at risk for seizures underwent 12‐h attended polysomnography in the neonatal intensive care unit (NICU). Bayley Scales of Infant Development, third edition (Bayley‐III) were administered at 18‐22 months.ResultThe 48 newborns (EGA 39.3 ± 1.6) had a median pediatric apnea‐hypopnea index (AHI) of 10.1 (3.3‐18.5) and most events were central (vs obstructive). Maternal and prenatal factors were not associated with AHI. Moreover, neonatal PSG results were not associated with Bayley‐III scores (P > 0.05).ConclusionSDB is common among term and near‐term newborns at risk for seizures. Follow‐up at ages when more nuanced testing can be performed may be necessary to establish whether neonatal SDB is associated with long‐term neurodevelopmental disability.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149248/1/ppul24266.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149248/2/ppul24266_am.pd

    Impact of hands‐on care on infant sleep in the neonatal intensive care unit

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135460/1/ppul23513_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135460/2/ppul23513.pd

    Treatment of seizures in the neonate: Guidelines and consensus-based recommendations—Special report from the ILAE Task Force on Neonatal Seizures

    Get PDF
    Seizures are common in neonates, but there is substantial management variability. The Neonatal Task Force of the International League Against Epilepsy (ILAE) developed evidence-based recommendations about antiseizure medication (ASM) management in neonates in accordance with ILAE standards. Six priority questions were formulated, a systematic literature review and meta-analysis were performed, and results were reported following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 standards. Bias was evaluated using the Cochrane tool and risk of Bias in non-randomised studies - of interventions (ROBINS-I), and quality of evidence was evaluated using grading of recommendations, assessment, development and evaluation (GRADE). If insufficient evidence was available, then expert opinion was sought using Delphi consensus methodology. The strength of recommendations was defined according to the ILAE Clinical Practice Guidelines development tool. There were six main recommendations. First, phenobarbital should be the first-line ASM (evidence-based recommendation) regardless of etiology (expert agreement), unless channelopathy is likely the cause for seizures (e.g., due to family history), in which case phenytoin or carbamazepine should be used. Second, among neonates with seizures not responding to first-line ASM, phenytoin, levetiracetam, midazolam, or lidocaine may be used as a second-line ASM (expert agreement). In neonates with cardiac disorders, levetiracetam may be the preferred second-line ASM (expert agreement). Third, following cessation of acute provoked seizures without evidence for neonatal-onset epilepsy, ASMs should be discontinued before discharge home, regardless of magnetic resonance imaging or electroencephalographic findings (expert agreement). Fourth, therapeutic hypothermia may reduce seizure burden in neonates with hypoxic–ischemic encephalopathy (evidence-based recommendation). Fifth, treating neonatal seizures (including electrographic-only seizures) to achieve a lower seizure burden may be associated with improved outcome (expert agreement). Sixth, a trial of pyridoxine may be attempted in neonates presenting with clinical features of vitamin B6-dependent epilepsy and seizures unresponsive to second-line ASM (expert agreement). Additional considerations include a standardized pathway for the management of neonatal seizures in each neonatal unit and informing parents/guardians about the diagnosis of seizures and initial treatment options
    • 

    corecore