18 research outputs found

    Regulation of secondary growth by poplar BLADE-ON-PETIOLE genes in Arabidopsis

    Get PDF
    BLADE-ON-PETIOLE (BOP) genes are essential regulators of vegetative and reproductive development in land plants. First characterized in Arabidopsis thaliana (Arabidopsis), members of this clade function as transcriptional co-activators by recruiting TGACG-motif binding (TGA) basic leucine zipper (bZIP) transcription factors. Highly expressed at organ boundaries, these genes are also expressed in vascular tissue and contribute to lignin biosynthesis during secondary growth. How these genes function in trees, which undergo extensive secondary growth to produce wood, remains unclear. Here, we investigate the functional conservation of BOP orthologs in Populus trichocarpa (poplar), a widely-used model for tree development. Within the poplar genome, we identified two BOP-like genes, PtrBPL1 and PtrBPL2, with abundant transcripts in stems. To assess their functions, we used heterologous assays in Arabidopsis plants. The promoters of PtrBPL1 and PtrBPL2, fused with a β-glucuronidase (GUS) reporter gene showed activity at organ boundaries and in secondary xylem and phloem. When introduced into Arabidopsis plants, PtrBPL1 and PtrBPL2 complemented leaf and flower patterning defects in bop1 bop2 mutants. Notably, Arabidopsis plants overexpressing PtrBPL1 and PtrBPL2 showed defects in stem elongation and the lignification of secondary tissues in the hypocotyl and stem. Finally, PtrBPL1 and PtrBPL2 formed complexes with TGA bZIP proteins in yeast. Collectively, our findings suggest that PtrBPL1 and PtrBPL2 are orthologs of Arabidopsis BOP1 and BOP2, potentially contributing to secondary growth regulation in poplar trees. This work provides a foundation for functional studies in trees

    Polyploidization for the Genetic Improvement of Cannabis sativa

    Get PDF
    Cannabis sativa L. is a diploid species, cultivated throughout the ages as a source of fiber, food, and secondary metabolites with therapeutic and recreational properties. Polyploidization is considered as a valuable tool in the genetic improvement of crop plants. Although this method has been used in hemp-type Cannabis, it has never been applied to drug-type strains. Here, we describe the development of tetraploid drug-type Cannabis lines and test whether this transformation alters yield or the profile of important secondary metabolites: Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), or terpenes. The mitotic spindle inhibitor oryzalin was used to induce polyploids in a THC/CBD balanced drug-type strain of Cannabis sativa. Cultured axillary bud explants were exposed to a range of oryzalin concentrations for 24 h. Flow cytometry was used to assess the ploidy of regenerated shoots. Treatment with 20–40 μM oryzalin produced the highest number of tetraploids. Tetraploid clones were assessed for changes in morphology and chemical profile compared to diploid control plants. Tetraploid fan leaves were larger, with stomata about 30% larger and about half as dense compared to diploids. Trichome density was increased by about 40% on tetraploid sugar leaves, coupled with significant changes in the terpene profile and a 9% increase in CBD that was significant in buds. No significant increase in yield of dried bud or THC content was observed. This research lays important groundwork for the breeding and development of new Cannabis strains with diverse chemical profiles, of benefit to medical and recreational users

    Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs

    No full text
    Flowering in Arabidopsis is controlled by endogenous and environmental signals relayed by distinct genetic pathways. The MADS-box flowering-time gene SOC1 is regulated by several pathways and is proposed to co-ordinate responses to environmental signals. SOC1 is directly activated by CONSTANS (CO) in long photoperiods and is repressed by FLC, a component of the vernalization (low-temperature) pathway. We show that in transgenic plants overexpressing CO and FLC, these proteins regulate flowering time antagonistically and FLC blocks transcriptional activation of SOC1 by CO. A series of SOC1::GUS reporter genes identified a 351 bp promoter sequence that mediates activation by CO and repression by FLC. A CArG box (MADS-domain protein binding element) within this sequence was recognized specifically by FLC in vitro and mediated repression by FLC in vivo, suggesting that FLC binds directly to the SOC1 promoter. We propose that CO is recruited to a separate promoter element by a DNA-binding factor and that activation by CO is impaired when FLC is bound to an adjacent CArG motif

    BLADE-ON-PETIOLE–Dependent Signaling Controls Leaf and Floral Patterning in Arabidopsis

    No full text
    NONEXPRESSOR OF PR GENES1 (NPR1) is a key regulator of the plant defense response known as systemic acquired resistance. Accumulation of the signal molecule salicylic acid (SA) leads to a change in intracellular redox potential, enabling NPR1 to enter the nucleus and interact with TGACG sequence–specific binding protein (TGA) transcription factors, which in turn bind to SA-responsive elements in the promoters of defense genes. Here, we show that two NPR1-like genes, BLADE-ON-PETIOLE1 (BOP1) and BOP2, function redundantly to control growth asymmetry, an important aspect of patterning in leaves and flowers. Phenotypes in the double mutant include leafy petioles, loss of floral organ abscission, and asymmetric flowers subtended by a bract. We demonstrate that BOP2 is localized to both the nucleus and the cytoplasm, but unlike NPR1, it is highly expressed in young floral meristems and in yeast interacts preferentially with the TGA transcription factor encoded by PERIANTHIA (PAN). In support of a biological relevance for this interaction, we show that bop1 bop2 and pan mutants share a pentamerous arrangement of first whorl floral organs, a patterning defect that is retained in bop1 bop2 pan triple mutants. Our data provide evidence that BOP proteins control patterning via direct interactions with TGA transcription factors and demonstrate that a signaling mechanism similar to that formally associated with plant defense is likely used for the control of developmental patterning

    Transcriptome analysis reveals regulatory framework for salt and osmotic tolerance in a succulent xerophyte

    No full text
    Abstract Background Zygophyllum xanthoxylum is a succulent xerophyte with remarkable tolerance to diverse abiotic stresses. Previous studies have revealed important physiological mechanisms and identified functional genes associated with stress tolerance. However, knowledge of the regulatory genes conferring stress tolerance in this species is poorly understood. Results Here, we present a comprehensive analysis of regulatory genes based on the transcriptome of Z. xanthoxylum roots exposed to osmotic stress and salt treatments. Significant changes were observed in transcripts related to known and obscure stress-related hormone signaling pathways, in particular abscisic acid and auxin. Significant changes were also found among key classes of early response regulatory genes encoding protein kinases, transcription factors, and ubiquitin-mediated proteolysis machinery. Network analysis shows a highly integrated matrix formed by these conserved and novel gene products associated with osmotic stress and salt in Z. xanthoxylum. Among them, two previously uncharacterized NAC (NAM/ATAF/CUC) transcription factor genes, ZxNAC083 (Unigene16368_All) and ZxNAC035 (CL6534.Contig1_All), conferred tolerance to salt and drought stress when constitutively overexpressed in Arabidopsis plants. Conclusions This study provides a unique framework for understanding osmotic stress and salt adaptation in Z. xanthoxylum including novel gene targets for engineering stress tolerance in susceptible crop species
    corecore