898 research outputs found

    Inventory Control System

    Get PDF
    This report explains the paper inventory control system designed and developed for Venetian Marble and Granite. The system implements new methods in generating work orders, new labels for the marble pieces, new clipboard stations for tracking, new storage rack numbering, and Microsoft Access as the foundation to the entire system. The group highly recommends that Venetian integrates the paper inventory control system into their company as soon as possible in order to reap its benefits

    Redundant Gs-coupled serotonin receptors regulate amyloid-β metabolism in vivo

    Get PDF
    BACKGROUND: The aggregation of amyloid-β (Aβ) into insoluble plaques is a hallmark pathology of Alzheimer’s disease (AD). Previous work has shown increasing serotonin levels with selective serotonin re-uptake inhibitor (SSRI) compounds reduces Aβ in the brain interstitial fluid (ISF) in a mouse model of AD and in the cerebrospinal fluid of humans. We investigated which serotonin receptor (5-HTR) subtypes and downstream effectors were responsible for this reduction. RESULTS: Agonists of 5-HT(4)R, 5-HT(6)R, and 5-HT(7)R significantly reduced ISF Aβ, but agonists of other receptor subtypes did not. Additionally, inhibition of Protein Kinase A (PKA) blocked the effects of citalopram, an SSRI, on ISF Aβ levels. Serotonin signaling does not appear to change gene expression to reduce Aβ levels in acute timeframes, but likely acts within the cytoplasm to increase α-secretase enzymatic activity. Broad pharmacological inhibition of putative α-secretases increased ISF Aβ and blocked the effects of citalopram. CONCLUSIONS: In total, these studies map the major signaling components linking serotonin receptors to suppression of brain ISF Aβ. These results suggest the reduction in ISF Aβ is mediated by a select group of 5-HTRs and open future avenues for targeted therapy of AD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13024-016-0112-5) contains supplementary material, which is available to authorized users

    Hippocampal volume in early onset depression

    Get PDF
    BACKGROUND: Abnormalities in limbic structures have been implicated in major depressive disorder (MDD). Although MDD is as common in adolescence as in adulthood, few studies have examined youth near illness onset in order to determine the possible influence of atypical development on the pathophysiology of this disorder. METHODS: Hippocampal volumes were measured in 17 MDD subjects (age = 16.67 ± 1.83 years [mean ± SD]; range = 13 – 18 years) and 17 age- and sex-matched healthy controls (16.23 ± 1.61 years [mean ± SD]; 13 – 18 years) using magnetic resonance imaging (MRI). RESULTS: An analysis of covariance revealed a significant difference between MDD and control subjects (F = 8.66, df = 1, 29, P = 0.006). This was more strongly localized to the left hippocampus (P = 0.001) than the right hippocampus (P = 0.047). CONCLUSIONS: Our findings provide new evidence of abnormalities in the hippocampus in early onset depression. However, our results should be considered preliminary given the small sample size studied

    Time-dependent properties of proton decay from crossing single-particle metastable states in deformed nuclei

    Get PDF
    A dynamical study of the decay of a metastable state by quantum tunneling through an anisotropic, non separable, two-dimensional potential barrier is performed by the numerical solution of the time-dependent Schrodinger equation. Initial quasi- stationary proton states are chosen in the framework of a deformed Woods-Saxon single-particle model. The decay of two sets of states corresponding to true and quasi levels-crossing is studied and the evolution of their decay properties as a function of nuclear deformation is calculated around the crossing point. The results show that the investigation of the proton decay from metastable states in deformed nuclei can unambiguously distinguish between the two types of crossing and determine the structure of the nuclear states involved.Comment: 15 pages, 9 figures, submitted to Phys. Rev.

    Dendritic Morphology of Hippocampal and Amygdalar Neurons in Adolescent Mice Is Resilient to Genetic Differences in Stress Reactivity

    Get PDF
    Many studies have shown that chronic stress or corticosterone over-exposure in rodents leads to extensive dendritic remodeling, particularly of principal neurons in the CA3 hippocampal area and the basolateral amygdala. We here investigated to what extent genetic predisposition of mice to high versus low stress reactivity, achieved through selective breeding of CD-1 mice, is also associated with structural plasticity in Golgi-stained neurons. Earlier, it was shown that the highly stress reactive (HR) compared to the intermediate (IR) and low (LR) stress reactive mice line presents a phenotype, with respect to neuroendocrine parameters, sleep architecture, emotional behavior and cognition, that recapitulates some of the features observed in patients suffering from major depression. In late adolescent males of the HR, IR, and LR mouse lines, we observed no significant differences in total dendritic length, number of branch points and branch tips, summated tip order, number of primary dendrites or dendritic complexity of either CA3 pyramidal neurons (apical as well as basal dendrites) or principal neurons in the basolateral amygdala. Apical dendrites of CA1 pyramidal neurons were also unaffected by the differences in stress reactivity of the animals; marginally higher length and complexity of the basal dendrites were found in LR compared to IR but not HR mice. In the same CA1 pyramidal neurons, spine density of distal apical tertiary dendrites was significantly higher in LR compared to IR or HR animals. We tentatively conclude that the dendritic complexity of principal hippocampal and amygdala neurons is remarkably stable in the light of a genetic predisposition to high versus low stress reactivity, while spine density seems more plastic. The latter possibly contributes to the behavioral phenotype of LR versus HR animals
    corecore