501 research outputs found

    The Machine as an Extension of the Body: When Identity, Immersion and Interactive Design Serve as Both Resource and Limitation for the Disabled

    Get PDF
    This research explores how the technological affordances of emerging social virtual environments and VR platforms where individuals from an online disability community are represented in avatar form, correspond to these users’ development of embodied identity, ability, and access to work and social communities. The visual attributes of these avatars, which can realistically reflect the user’s physical self or divert from human form entirely, raise interesting questions regarding the role identity plays in the workplace, be it gender, race, age, weight, or visible disability. Additionally, the technology itself becomes fundamental to identity as the increasing use of artificial intelligence (AI), motion capture, and speech-to-text/text-to-speech technologies create digital capabilities that become part of an individual’s identity. This raises further questions about how virtual world technologies can both increase and potentially create barriers to accessibility for individuals who find freedom in their technologically embodied surrogates

    Sex Differences in the Activation of the Spinoparabrachial Circuit by Visceral Pain

    Get PDF
    Women are more sensitive to most noxious visceral stimuli, both in terms of intensity and frequency. The spinoparabrachial (spino-PBn) pathway is an essential neural circuit for the central relay of viscerosensitive information, but studies characterizing the anatomical and physiological characteristics of this pathway have only been conducted in males. Sex differences in the anatomical and/or physiological organization of the spino-PBn may contribute to the sexually dimorphic incidence rate for visceral pain syndromes. Retrograde labeling and colorectal distention (CRD) induced Fos expression was used to delineate the spino-PBn circuit in male and cycling female Sprague-Dawley rats. The ability of morphine to suppress CRD was also examined. Neurons retrogradely labeled from the PBn were localized primarily within the superficial dorsal horn and sacral parasympathetic nucleus of the L5-S1 spinal cord. While no sex differences were noted in either the distribution of spino-PBn neurons or in CRD-induced Fos expression, significantly greater Fos expression was noted specifically in spino-PBn neurons in males compared to females. Morphine selectively attenuated Fos expression in spino-PBn neurons in males, but not females. Subsequent anatomical studies showed significantly reduced mu opioid receptor protein levels and radioligand binding within the PBn of males in comparison to females. Together, these data indicate that there are profound sex differences in how visceral pain and opiates engage the spino-PBn pathway, which may account for the observed clinical differences in visceral pain sensitivity and morphine antinociception

    Abnormal phenomena in a one-dimensional periodic structure containing left-handed materials

    Full text link
    The explicit dispersion equation for a one-dimensional periodic structure with alternative layers of left-handed material (LHM) and right-handed material (RHM) is given and analyzed. Some abnormal phenomena such as spurious modes with complex frequencies, discrete modes and photon tunnelling modes are observed in the band structure. The existence of spurious modes with complex frequencies is a common problem in the calculation of the band structure for such a photonic crystal. Physical explanation and significance are given for the discrete modes (with real values of wave number) and photon tunnelling propagation modes (with imaginary wave numbers in a limited region).Comment: 10 pages, 4 figure

    Clinical applications of electrical stimulation for peripheral nerve injury: A systematic review

    Get PDF
    INTRODUCTION: Peripheral nerve injuries are common neurologic injuries that are challenging to treat with current therapies. Electrical stimulation has been shown to accelerate reinnervation and enhance functional recovery. This study aims to review the literature on clinical application of electrical stimulation for peripheral nerve injury. METHODS: PubMed and Embase were sourced from 1995 to August 2022. Selection was based on predetermined inclusion/exclusion criteria. Eight hundred and thirty-five articles were screened with seven being included in this review. RESULTS: Two hundred and twenty-nine patients with peripheral nerve injuries were represented. Six of the studies were randomized controlled trials. A variety of nerve injuries were represented with all being in the upper extremity and supraclavicular region. Electrical stimulation protocols and evaluation varied. Electrodes were implanted in four studies with one also implanting the stimulator. Length of stimulation per session was either 20 mins or 1 h. Median stimulation frequency was 20 Hz. Stimulation intensity varied from 3 to 30V; pulse width ranged from 0.1 to 1.007 ms. Three protocols were conducted immediately after surgery. Patients were followed for an average of 13.5 months and were evaluated using electrophysiology and combinations of motor, sensory, and functional criteria. DISCUSSION: Patients who received electrical stimulation consistently demonstrated better recovery compared to their respective controls. Electrical stimulation for peripheral nerve injury is a novel treatment that has not been well-studied in humans. Our review illustrates the potential benefit in implementing this approach into everyday practice. Future research should aim to optimize protocol for clinical use

    Plane waves with negative phase velocity in Faraday chiral mediums

    Full text link
    The propagation of plane waves in a Faraday chiral medium is investigated. Conditions for the phase velocity to be directed opposite to the direction of power flow are derived for propagation in an arbitrary direction; simplified conditions which apply to propagation parallel to the distinguished axis are also established. These negative phase-velocity conditions are explored numerically using a representative Faraday chiral medium, arising from the homogenization of an isotropic chiral medium and a magnetically biased ferrite. It is demonstrated that the phase velocity may be directed opposite to power flow, provided that the gyrotropic parameter of the ferrite component medium is sufficiently large compared with the corresponding nongyrotropic permeability parameters.Comment: accepted for publication in Phys. Rev.

    A spherical perfect lens

    Full text link
    It has been recently proved that a slab of negative refractive index material acts as a perfect lens in that it makes accessible the sub-wavelength image information contained in the evanescent modes of a source. Here we elaborate on perfect lens solutions to spherical shells of negative refractive material where magnification of the near-field images becomes possible. The negative refractive materials then need to be spatially dispersive with ϵ(r)∼1/r\epsilon(r) \sim 1/r and μ(r)∼1/r\mu(r)\sim 1/r. We concentrate on lens-like solutions for the extreme near-field limit. Then the conditions for the TM and TE polarized modes become independent of μ\mu and ϵ\epsilon respectively.Comment: Revtex4, 9 pages, 2 figures (eps

    Automated Security Analysis of IoT Software Updates

    Get PDF
    IoT devices often operate unsupervised in ever-changing environments for several years. Therefore, they need to be updated on a regular basis. Current approaches for software updates on IoT, like the recent SUIT proposal, focus on granting integrity and confidentiality but do not analyze the content of the software update, especially the IoT application which is deployed to IoT devices. To this aim, in this paper, we present IoTAV, an automated software analysis framework for systematically verifying the security of the applications contained in software updates w.r.t. a given security policy. Our proposal can be adopted transparently by current IoT software updates workflows. We prove the viability of IoTAV by testing our methodology on a set of actual RIOT OS applications. Experimental results indicate that the approach is viable in terms of both reliability and performance, leading to the identification of 26 security policy violations in 31 real-world RIOT applications

    How Emergent Social Patterns in Allogrooming Combat Parasitic Infections

    Get PDF
    Members of social groups risk infection through contact with those in their social network. Evidence that social organization may protect populations from pathogens in certain circumstances prompts the question as to how social organization affects the spread of ectoparasites. The same grooming behaviors that establish social bonds also play a role in the progression of ectoparasitic outbreaks. In this paper, we model the interactions between social organization and allogrooming efficiency to consider how ectoparasitic threats may have shaped the evolution of social behaviors. To better understand the impacts of social grooming on organizational structure, we consider several dynamic models of social organization using network centrality measures as the basis of neighbor selection. Within this framework, we consider the impact of varying levels of social grooming on both the group structure and the overall ectoparasitic disease burden. Our results demonstrate that allogrooming, along with ongoing dynamic social organization, may be protective with respect to both the timing and the magnitude of ectoparasitic epidemics. These results support the idea that ectoparasitic threat should not be considered a single evolutionary factor in the evolution of host social systems, and may have operated in different ways depending on the broader ecology of the host-ectoparasite interaction
    • …
    corecore