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Abstract: Women are more sensitive to most noxious visceral stimuli, both in terms of intensity and 

frequency. The spinoparabrachial (spino-PBn) pathway is an essential neural circuit for the central 

relay of viscerosensitive information, but studies characterizing the anatomical and physiological 

characteristics of this pathway have only been conducted in males. Sex differences in the 

anatomical and/or physiological organization of the spino-PBn may contribute to the sexually 

dimorphic incidence rate     for visceral pain syndromes. Retrograde labeling and colorectal 

distention (CRD) induced Fos expression was used to delineate the spino-PBn circuit in male and 

cycling female Sprague-Dawley rats. The ability of morphine to suppress CRD was also examined. 

Neurons retrogradely labeled from the PBn were localized primarily within the superficial dorsal 

horn and sacral parasympathetic nucleus of the L5-S1 spinal cord. While no sex differences were 

noted in either the distribution of spino-PBn neurons or in CRD-induced Fos expression, 

significantly greater Fos expression was noted specifically in spino-PBn neurons in males 

compared to females. Morphine selectively attenuated Fos expression in spino-PBn neurons in 



males, but not females. Subsequent anatomical studies showed significantly reduced mu opioid 

receptor protein levels and radioligand binding within the PBn of males in comparison to females. 

Together, these data indicate that there are profound sex differences in how visceral pain and 

opiates engage the spino-PBn pathway, which may account for the observed clinical differences in

visceral pain sensitivity and morphine antinociception.



February 23, 2009

Eric G Krause, PhD
Editor, Special Issue, Physiology & Behavior

Dear Dr. Krause: 

We submit the revised manuscript (PHB-D-08-00625), entitled:

"Sex differences in the activation of the spinoparabrachial circuit by visceral pain",

for publication in Physiology & Behavior, Special Issue on Sex Differences.

We were very pleased with the positive and thorough review of our manuscript, and are submitting a revised 
version including all major and minor changes as recommended by the reviewers. A detailed list of all changes 
with a brief summary of the reviewers comment followed by the authors’ response is given below.

Authors Response to Reviewers' comments:

Reviewer #1: General Comments:  
Major Comments:

1. My only substantive suggestion is to pay at least 2-3 sentence lip service to the idea that other supraspinal 
regions involved in endogenous analgesia may be involved as well as PbN…  
Response:  We now include a paragraph in the Discussion that addresses the role of the PAG and RVM, in 
addition to the PBn. 

2. "We have previously reported that in urethane anesthetized rats 30-40% of the lumbosacral dorsal horn 
neurons retrogradely labeled from the PBn were Fos+ following noxious colorectal distention [15], 
suggesting that visceral pain selectively activates the spinoparabrachial circuit."  This, as stated, suggests 
visceral pain activates the spinoparabrachial circuit but I do not see how this implies any selectivity, which 
I take to mean that visceral pain but not superficial pain activates…  Please clarify what is meant by 
selectivity and how such selectivity is supported by data.
Response:  The reviewer is correct and we cannot use the term ‘selectively’ since this was not specifically 
addressed in that study.  Therefore, we deleted the term ‘selectively’ and more accurately state that 
‘visceral pain activates this circuit’.

3. "Indeed, we have recently reported that the ED50 for morphine is approximately two-times higher in 
females than males in either visceral [24, 28, 29]."  This sentence needs to be finished.  And I would 
recommend adding that these findings were from rats.
Response:  The sentence is finished and the species indicated.  I apologize for the sloppiness. 

4. How many males, females were used in each expt? How many animals were studied after no 
inflation/distension?
Response:  n’s are now indicated.
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5. The sections in Fig 6 so not appear representative of the data.  It appears that the photo of a female PbN 
shows much less than 50% of what the photo of a male PbN shows. Maybe the authors could add into the 
legend what the optical densities of these two sections are so the reader can be calibrated.
Response:  Optical density values are now indicated in Figure 6. 

6. Minor comments
Response:  All minor comments have been fixed.

Reviewer #2: Major Comments:  
1. …   Unfortunately, the female rat data for all but one part of the study was grouped together, thereby 

weakening such an argument. How many rats were studied in each of the stages of the estrous cycle 
(diestus, estrus, proestrus)? Were there differences among these female groups in terms of Fos+ cells, 
FG+ cells, and double labeled cells?  How do each of these groups compare to males?...  
Response:  Unfortunately, due to our small n’s, we were unable to analyze the female data in reference to 
their stage of estrous. Following surgery, most of our animals remained in diestrus or proestrus, with very 
few animals noted as being in estrus (n=1).  We have now indicated this in the Discussion section and 
referenced the Loyd et al. 2008 J. Neurosci paper for any discussion of hormonal influences on morphine 
sensitivity.  

2. Fluorogold injection into the parabrachial nucleus retrogradely labeled neurons at L5-S1 spinal levels that 
were localized to lamina 1 and X and the sacral parasympathetic nucleus (SPN). Are you saying that there 
are spino-PBn neurons in the SPN??  There should be a discussion of this finding, particularly given that 
the sex difference was in part due to changes in activation of these neurons. Fluorogold is not known to 
be a trans-synaptic tracer.  
Response:  We did note a few retrogradely labeled cells within the SPN (see Figure 6), however it was the 
spino-PBn cells in lamina I that contributed to the observed sex differences in activation by noxious CRD 
and suppression by morphine. 

3. The Discussion is too short.  Not much is there when you eliminate summary statements.
Response:  The discussion was indeed remarkably short and has been ‘beefed’ up significantly. 

4. Minor Edits
Response:  All minor edits were fixed with the exception of encircling the PBn in Figure 1a and 1b.  We 
tried doing this and it looked horrible. The PBn is labeled, and we think the point is made that the 
injection sites are comparable. As there were no sex differences noted in either the number of 
retrogradely labeled neurons, or in their distribution, we felt that showing representative injection sites 
was sufficient.

In summary, we would like to again thank the reviewers for taking the extensive time and effort to review our 
manuscript. The reviews and comments were very thorough and highly constructive, and we feel that the 
manuscript is much stronger with these revisions. We hope that you find our revised manuscript suitable for 
publication in Physiology & Behavior.

Sincerely,

Anne Z. Murphy, Ph.D
Associate Professor
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Abstract. Women are more sensitive to most noxious visceral stimuli, both in terms of 

intensity and frequency. The spinoparabrachial (spino-PBn) pathway is an essential 

neural circuit for the central relay of viscerosensitive information, but studies 

characterizing the anatomical and physiological characteristics of this pathway have 

only been conducted in males. Sex differences in the anatomical and/or physiological 

organization of the spino-PBn may contribute to the sexually dimorphic incidence rate     

for visceral pain syndromes. Retrograde labeling and colorectal distention (CRD) 

induced Fos expression was used to delineate the spino-PBn circuit in male and cycling 

female Sprague-Dawley rats. The ability of morphine to suppress CRD was also 

examined. Neurons retrogradely labeled from the PBn were localized primarily within 

the superficial dorsal horn and sacral parasympathetic nucleus of the L5-S1 spinal cord. 

While no sex differences were noted in either the distribution of spino-PBn neurons or in 

CRD-induced Fos expression, significantly greater Fos expression was noted 

specifically in spino-PBn neurons in males compared to females. Morphine selectively 

attenuated Fos expression in spino-PBn neurons in males, but not females. Subsequent 

anatomical studies showed significantly reduced mu opioid receptor protein levels and 

radioligand binding within the PBn of males in comparison to females. Together, these 

data indicate that there are profound sex differences in how a noxious visceral stimulus 

and opiates engage the spino-PBn pathway, which may account for the observed 

clinical differences in visceral pain sensitivity and morphine antinociception.

Indexing Terms:  colorectal distension, parabrachial nucleus, opiates, mu opioid 
receptor, morphine
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Pain of visceral origin is a significant problem, both in terms of management and 

how it affects quality of life. It is the defining characteristic of functional bowel disorders, 

including irritable bowel syndrome (IBS), functional dyspepsia, ulcerative colitis, and 

acute and chronic pancreatic disease to name a few. Epidemiological studies have 

consistently shown that women are more likely to suffer from visceral pain than men [1-

4]. Unfortunately, very little, if anything, is known regarding the etiology of these sex 

differences.  Using colorectal distension as a model of visceral pain, we have recently 

shown that females have significantly lower visceral pain thresholds than males [5]. Our 

data further suggest that the gonadal steroid estradiol contributes to the observed sex 

differences in visceral sensitivity [5-7]. However, the anatomical and physiological basis 

for sexually dimorphic visceral pain thresholds is not known. 

The parabrachial nucleus (PBN) has long been recognized as an important 

brainstem relay in visceral nociceptive sensory processing [8-10]. Nociceptive dorsal 

horn neurons, most notably from lamina I, project to the PBn [11-15] and relay noxious 

visceral input to the lateral parabrachial nuclei including the external, superior, dorsal 

and central lateral subnuclei [16, 17]. Neurons in the parabrachial nuclei that respond to 

noxious stimulation, in turn, project to the central nucleus of the amygdala [8, 18, 19], and 

this spino-parabrachial-amygdala pathway is thought to constitute an essential circuit for 

the affective-motivational component of visceral pain [18]. 

Lumbosacral spinal cord neurons retrogradely labeled from the PBn are located 

predominantly within lamina I and the lateral reticulated area of the neck of the dorsal 

horn. We have previously reported that in urethane anesthetized rats 30-40% of the 

lumbosacral dorsal horn neurons retrogradely labeled from the PBn were Fos+ following 
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noxious colorectal distention [15], suggesting that visceral pain activates the 

spinoparabrachial circuit. These studies were conducted in males and comparable 

studies have not been conducted in females even though the incidence rate for most 

visceral pain syndromes is significantly higher in females [1]. 

It is well established that systemic or central opioid administration significantly 

attenuates visceral pain. Indeed, opioid-based narcotics have long been recognized as 

the drug of choice for the attenuation of postoperative, obstetric and cancer pain that is 

visceral in origin [20-22]. Several studies have reported that intrathecally or systemically 

administered mu, delta or kappa agonists significantly attenuate both the visceromotor 

reflex and the pressor reflex evoked by CRD (rat: 6, 8, 18, 19, 23, 24; rabbit: 27, 28). Similar 

results have been reported using the acetic acid writhing test [25-27].

While the above studies indicate that morphine is an effective drug for the alleviation 

of visceral pain, it is becoming increasingly clear that there are profound sex differences 

in the antinociceptive potency of opioids. Indeed, we have recently reported that the 

ED50 for morphine is approximately two-times higher in female than male rats in either 

visceral [6, 24, 28] or persistent somatic [29, 37] pain assays. However, the locus for 

morphine suppression of visceral pain is unclear. Mu opioid receptors (MOR) are 

extremely dense within the rat dorsal horn and overlap with the distribution of spino-PBn 

neurons. However, as there are no sex differences in spinal morphine antinociception of 

CRD, suggesting that the spinal cord dorsal horn is not the locus underlying the sexually 

dimorphic actions of morphine [24]. Alternatively, MOR expression is extremely dense 

within the PBN, and overlaps with the distribution of spino-PBn afferents [30, 31]. Sex 

differences in morphine inhibition of visceroceptive input to the PBn would provide a 
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direct mechanism for the sexually dimorphic effects of morphine on visceral pain 

modulation. 

The present study tested the hypothesis that sex differences in the anatomical 

organization of the spino-PBn circuit, and its activation by a noxious visceral stimulus, 

provide the biological bases for the observed sex differences in visceral pain. We also 

tested whether systemic administration of morphine differentially suppressed the 

activation of this pathway in male and female rats. Additional studies tested the 

hypothesis that sex differences in PBn MOR protein levels and binding contributed to 

the dimorphic effects of morphine observed in the present study.
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MATERIALS AND METHODS

Experimental Subjects.  Eighteen adult intact male Sprague-Dawley rats and eighteen 

adult cycling female Sprague-Dawley rats (Zivic-Miller) were used in these experiments.  

Animals were weight-matched (250-300g) and housed in same-sex pairs in separate 

rooms on a 12:12 hour light: dark cycle (lights on at 7:00A.M.).  Rats had access to food 

and water ad libitum.  These studies were performed in strict compliance with the 

Institutional Animal Care and Use Committee at Georgia State University.  All efforts 

were made to minimize any possible suffering by the animal, and to reduce the number 

of animals used.  

Vaginal Cytology.  Vaginal lavages were performed daily beginning two weeks prior to 

testing to confirm that all female rats were cycling normally and to keep daily records on 

the stages of their cycle in respect to experimental testing. Proestrus was identified as a 

predominance of nucleated epithelial cells and estrus was identified as a predominance 

of cornified epithelial cells [58].  Diestrus 1 was differentiated from Diestrus 2 by the 

presence of leukocytes. As no differences were noted between Diestrus 1 and Diestrus 

2 animals on any of our dependent measures, these groups are pooled (Diestrus). Rats 

that appeared between phases were noted as being in the more advanced stage.

Iontophoresis Injections.  Male and female rats were anesthetized with 

ketamine/xylazine (50 mg/kg / 10mg/kg; s.c.) and placed in a stereotaxic frame upon 

achieving a deep surgical plane of anesthesia as previously described [15].  The skull 

was adjusted so that bregma and lambda were at the same dorsoventral coordinate.  A 

glass micropipette (tip: 10-20 µM) was filled with the retrograde tracer Fluorogold (FG; 
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2% soln. w/v in saline; Fluorochrome Inc.) via capillary action and lowered into the 

parabrachial nucleus at the following coordinates (in mm): Lambda: -0.5; ML: 1.8; DV: 

5.0 from brain.  FG was iontophoresed (50/50 duty cycle, 7.5 A current) for 15 min.  

Pipettes remained in place for five minutes after injection to prevent backflow of tracer 

along the pipette tract and to facilitate neuronal uptake.  Attention to detail was taken to 

ensure that all injection protocols were comparable for males and females.  Following 

surgery the animals recovered under a heat lamp and were returned to their original 

housing facilities upon recovery from the anesthetic.  

Colorectal Distension & Morphine Administration.  Animals were fasted 24 hrs prior

to the experiment; water was provided ad libitum. On the day of the experiment, rats 

were briefly sedated with isofluorane and a 5-6 cm balloon attached to Tygon tubing 

was inserted through the anus into the descending colon and rectum. The distal end of 

the balloon was at least 1 cm proximal to the external anal sphincter. Rats were loosely 

restrained and allowed 30 min to recover from the isofluorane. Colorectal distention 

(CRD) was produced by inflation of the distention balloon with air. The pressure was 

monitored and kept constant by a pressure controller/timing device  (Bioengineering, 

University of Iowa). Rats (male, n=16; females, n=16) were distended to 80 mmHg 

(noxious) for two hours (30 sec on; 90 sec off) and then perfused [32]. Control animals 

(n=2/sex) were treated identical to the experimental groups except that the balloon was 

not inflated. 

Immediately prior to distention, animals were administered morphine sulfate 

subcutaneously (4.0 mg/kg, s.c.; 28, 34) or equivolume of sterile saline as a control. 
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Morphine sulfate, a gift from the NIDA Drug program, was prepared fresh in sterile 

saline on the day of the experiment.  

Perfusion fixation.  Two hours after morphine administration, animals were given a 

euthanizing dose of Nembutal (160 mg/kg; i.p.) and perfused transcardially with 150-

200 ml of 0.9% sodium chloride containing 2% sodium nitrite as a vasodilator, followed 

immediately by 300 ml of 4% paraformaldehyde in 0.1M phosphate buffer containing 

2.5% acrolein (Polyscience).  Residual acrolein was removed from the animal with a 

final rinse with 150-200 ml of the sodium chloride/sodium nitrate solution. The brain and 

spinal cord were removed immediately following perfusion and the tissue was stored at 

4°C in 30% sucrose solution.  Tissue was cut into 25m coronal sections with a Leica 

2000R freezing microtome and stored free-floating in cryoprotectant-antifreeze solution 

[33] at –20°C until immunocytochemical processing was initiated.

Immunocytochemistry.  Brain (1:6 series) and lumbosacral spinal cord (L5-S1; 1:4 

series) were processed for FG and/or Fos immunoreactivity as previously described [28, 

34].  Briefly, sections were removed from the cryoprotectant-antifreeze solution, rinsed 

extensively in potassium phosphate-buffered saline (KPBS), and then reacted for 20 

minutes in 1% sodium borohydride to remove excess aldehydes.  Sections were then 

incubated in primary antibody solution directed against either Fos or FG in KPBS 

containing 0.1% Triton X for 1 hour at room temperature followed by 48 hours at 4C.  

Cells containing Fos were identified using the polyclonal rabbit anti-Fos antibody 

(Oncogene, Cat. No. PC38; lot no. 4194) at a concentration of 1:50,000. This rabbit 

antiserum was prepared against the synthetic peptide (SGFNADYEASSSRC) 

corresponding to amino acids 4-17 of human c-Fos. In western blots, this antibody 
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recognizes the ~55 kDa c-Fos and ~62 kDa v-Fos proteins, and does not cross-react 

with the ~39 kDa Jun protein (manufacturer’s technical information). FG containing cells 

were recognized using the polyclonal rabbit anti-Fluorogold antibody (Chemicon, Cat. 

No. AB153; lot no. 25060005) at a concentration of 1:10,000. This antibody was raised 

against the chemical compound hydroxystildamidine. No cytoplasmic FG staining was 

present in animals in which the tracer failed to be ejected from the electrode. In addition, 

the distribution of retrogradely labeled cells within the dorsal horn of the spinal cord is 

identical to published reports using alternative retrograde tracers.

After rinsing in KPBS, the tissue was incubated for 1 hour in biotinylated goat anti-

rabbit IgG (Jackson Immunoresearch, 1:600), rinsed in KPBS, and incubated for 1 hour 

in avidin-biotin peroxidase complex (1:10; ABC Elite Kit, Vector Labs).  After rinsing in 

KPBS and sodium acetate (0.175 M; pH 6.5), Fos was visualized as a black reaction 

product using nickel sulfate intensified 3,3’-diaminobenzidine solution containing 0.08% 

hydrogen peroxide in sodium acetate buffer.  FG was always visualized as a brown 

reaction product using 3,3’-diaminobenzidine containing 0.08% hydrogen peroxide in 

Tris buffer (pH 7.2).  The reaction product was terminated after 15-30 minutes by rinsing 

in sodium acetate buffer.  

For labeling both antigens, sections were first processed for Fos immunoreactivity as

described above producing a black reaction product.  Following visualization of Fos, 

sections were rinsed in KPBS and then processed as above with the rabbit anti-FG 

producing a brown reaction product. Resulting double labeled neurons had black nuclei 

[35] surrounded by brown cytoplasm (FG) [15, 28]. Sections were mounted out of saline 
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onto gelatin-subbed slides, air-dried overnight, dehydrated in a series of graded 

alcohols, cleared in xylene, and cover-slipped using Permount. 

For identification of mu opioid receptor containing neurons, 25 um tissue sections 

were incubated in primary antibody solution rabbit anti-MOR1 (Abcam, Cambridge, MA; 

1,50,000) in KPBS containing 1.0% Triton-X for one hour at room temperature followed 

by 48 hours at 4C. This antibody was prepared against the synthetic peptide 

(NHQLENLEAETAPLP) corresponding to amino acids 384-398 of rat MOR1 [36]. 

Secondary and avidin-biotin-peroxidase steps were identical to above. MOR1 was 

visualized as a black reaction product using nickel sulfate intensified 3,3’-

diaminobenzidine solution containing 0.08% hydrogen peroxide in sodium acetate 

buffer. Sections were rinsed, mounted and dehydrated in a series of graded alcohols, 

and then cover-slipped using Permount. Mu opioid receptor antibody specificity was 

confirmed by lack of MOR+ labeling in MOR knock out mouse tissue (kindly provided by 

Bridgette Kieffer, Ph.D., Institut de Génétique et de Biologie Moléculaire et Cellulaire, 

Illkirch, France). 

Receptor Autoradiography.  Intact male (n=4) and cycling female rats  (n=4) were 

rapidly decapitated and brains prepared for autoradiography as previously described 

[37]. Briefly, brains were removed rapidly, flash frozen in 2-Methylbutane and stored at -

80oC. Fresh frozen tissue was cut in a 1:4 series of 30 m coronal sections at -20 oC 

with a Leica CM3050S cryostat, immediately mounted onto glass slides and stored at -

80oC. Slides were dried and fixed in 4% paraformaldehyde followed by rinses in 50mM 

Tris buffer (pH 7.4) containing 100nM NaCl. Slides were then placed in a tracer buffer 

containing either tritiated DAMGO (1 nM; Amersham, Pittsburg, PA) or tritiated 
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Naloxone (0.5 nM; Amersham, Pittsburg, PA) for 60 minutes followed by a series of 

rinses in 50mM Tris buffer (pH 7.4) containing MgCl2. Tissue was allowed to dry and 

placed on autoradiographic film for 5 weeks at which point films were developed with a 

FujiFilm BAS 5000 (Valhalla, NY).  

Densitometry.  For MOR immunohistochemistry data, 12-bit grayscale images were 

captured using a QImaging Retiga EXi CCD camera (Surrey, BC, Canada) and IPLab 

Image Analysis Software (BD Biosciences, Rockville, MD). The PBn was bilaterally 

sampled (35mm2 at 10X magnification) between Bregma -9.16 to -9.68 three times per 

section and the average grayscale pixel value across the PBn (mean 6 sections per 

subject) was recorded. Measures were corrected for non-specific immunoreactivity 

background by subtraction of measures taken from areas of equal size lacking specific 

immunoreactivity adjacent to the PBn in the same section. For autoradiography data, 

color images were captured and the brightness/contrast was adjusted using Fujifilm 

Multigauge software (Vallhala, NY). Measures were corrected for non-specific binding 

by subtraction of measures taken from a same section area adjacent to the PBn of 

equal size.

Data Analysis and Presentation. The mean number of FG+, Fos+, or Fos+FG 

neurons was determined for three rostrocaudal levels of the spinal cord:  L5, L6 and S1. 

These regions are easily distinguishable based on the following anatomical landmarks:  

L5 contains a prominent lateral column of motor neurons; L6 contains the 

retrodorsolateral (RDL) motoneuronal pool; S1 was defined as the absence of the RDL 

and the presence of the sacral parasympathetic nucleus (SPN) [38, 39]. The number of 

singly (FG or Fos) or dually (FG that contained Fos; FG/Fos) labeled cells was for 
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quantified for 5-6 sections per region per animal. The number of Fos+ cells within the 

PBn was also quantified on the side contra to the injection site using the above 

procedure. Results are expressed as the mean + standard error of the mean. Only 

animals with comparable injection sites limited to the PBn were used for analysis 

(males, n=12; females, n=10). Analysis of variance was used to test for significant main 

effects of sex (male, female) and treatment (morphine, saline). P<0.05 was considered 

significant for all analyses. 

For data presentation, a representative animal from each experimental group was 

selected and the distributions of FG and Fos within the L5-S1 spinal cord were plotted 

using a Nikon Drawing Tube attached to a Nikon Optiphot microscope. Plots were 

imported to the computer and finalized using Adobe Illustrator 10.  Photomicrographs 

were generated using a Synsys digital camera attached to a Nikon Eclipse E800 

microscope.  Images were captured with IP Spectrum software and finalized using 

Adobe Photoshop 7.0.  Alterations to the images were strictly limited to enhancement of 

brightness/contrast.
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RESULTS

Anatomical and Functional Organization of the Spino-Parabrachial Circuit

The first series of experiments tested the hypothesis that sex differences in the anatomy 

and/or physiology of the spino-PBn pathway contributed to the previously observed sex 

differences in visceral sensitivity [24]. Figure 1 shows examples of a Fluorogold (FG) 

injections into the PBn. Spino-PBn neurons were localized within L5-S1 spinal cord, in 

lamina I and X, and the sacral parasympathetic nucleus (SPN). No sex differences were 

noted in either the distribution or number of FG+ cells, with an average of 10-15 

retrogradely labeled cells per section (see Fig. 2A,B).  Interestingly, while colorectal 

distention induced comparable Fos expression in the L5-S1 cord of males and females 

(mean cells/section for combined L5-S1:  males, 79+7; females, 92+4; Fig. 2A, right 

panel and Fig. 2B), noxious CRD selectively activated spino-PBn neurons in males, but 

not females (Fig. 2C).  Indeed, in males, approximately 70% of spino-PBn neurons 

expressed CRD-induced Fos; by contrast, less than 40% of spino-PBn neurons were 

Fos+ in females. Dual labeled cells were localized primarily within lamina I and SPN 

(Fig. 2B).   Limited Fos expression was observed in control animals that did not undergo 

distension. Figure 3 shows an example of the high level of Fos expression in spino-PBn 

neurons in males versus females. These studies are the first to demonstrate sex 

differences in the activation of a visceral pain pathway; this sexually dimorphic 

activation of the spino-PBn circuit may provide the biological basis for our observed sex 

differences in visceral sensitivity.

Morphine differentially modulates visceral sensitivity in males and females.  
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In our previous studies, we found that systemic administration of morphine differentially 

suppressed the magnitude of the visceromotor response to CRD (ED50: 3.8 for females 

vs. 1.5 mg/kg for males [24]). Given these significant sex differences in morphine 

attenuation of visceral pain, we next examined whether morphine preferentially 

suppressed CRD-induced Fos in spino-PBn neurons. As shown in Figure 4, morphine 

significantly suppressed CRD-induced Fos in males (p<0.0001) but not females 

(p>0.05). Similar to previous reports [42], morphine suppressed CRD-induced Fos in all 

laminar regions (Fig. 4B). Interestingly, the percentage of spino-PBn neurons 

expressing Fos was reduced from 70% to 40% in males, while no reduction in FG/Fos+ 

neurons was noted for females (Fig. 4C).   Representative photomicrographs showing 

the sex difference in morphine suppression of CRD-induced Fos in spino-PBn neurons 

are shown in Figure 5. 

Sex differences in mu opioid receptor expression in the PBn    

In the present study, morphine was given systemically and therefore may be acting 

peripherally and/or centrally to suppress CRD-induced Fos and visceral pain. The 

lumbosacral dorsal horn and PBn are two likely sites for morphine action: both contain 

high levels of MOR and respond to noxious visceroceptive input. As we have previously 

shown no sex differences in spinal morphine suppression of visceral pain [24], our next 

series of experiments focused on the PBn, specifically examining whether MOR 

expression within the PBn was sexually dimorphic and may contribute to the observed 

sex differences in morphine suppression of visceral pain. 

MOR immunoreactivity was extremely dense throughout the PBn, and was present 

in all PBn subnuclei.  Figure 6 shows an example of MOR+ staining within the PBn of a 
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male (Fig. 6A) and diestrus female (Fig. 6B) rat. MOR expression fluctuated across the 

estrous cycle, with significantly reduced MOR immunoreactivity noted in proestrus 

females when compared males (p=0.007). This reduction in MOR expression in 

proestrus females was not limited to any particular subnuclei but was uniformly reduced 

throughout the PBn.

We next used autoradiography to determine if the sex differences in PBn MOR 

immunoreactivity were reflected as a decrease in ligand binding. Figure 7 shows 

representative autoradiograms of a male (Fig. 7A) and diestrus female (Fig. 7B).  

Quantitative analysis of tritiated DAMGO binding showed significantly reduced binding 

within the PBn of diestrus females compared to males (p=0.04). 
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Discussion

The present study tested the hypothesis that sex differences in the anatomy 

and/or physiology of the spino-PBn pathway contribute to sex differences in visceral 

pain. Two key observations are reported. First, no sex difference was observed in either 

the number or distribution of CRD-evoked Fos labeled neurons in the spinal cord, or in 

the number or distribution of spinal neurons retrogradely labeled from the PBn. 

However, noxious CRD preferentially activated the spino-PBn pathway in males, but not 

females. In contrast, the response of postsynaptic dorsal column neurons to noxious 

visceral stimulation is greater in females compared to males [55], suggesting that 

supraspinal relay of visceroceptive information is sexually dimorphic. These findings 

have significant implications for therapeutic strategies designed to suppress visceral 

pain. 

The second major finding of these studies is that systemic morphine produced 

greater attenuation of CRD-induced Fos expression in the lumbosacral spinal cord in 

general, and spino-PBn neurons in particular, in male rats.  This finding is consistent 

with previous studies reporting greater morphine antinociception in males compared to 

females [37, 44-46]. Indeed, we have recently reported that systemic, 

intracerebroventricular or intra-PAG morphine produces greater attenuation of visceral 

and persistent somatic inflammatory pain in male compared to female rats [24, 37]. 

Interestingly, the sex difference in the effect of morphine on the visceromotor response 

was not mediated at the level of the spinal cord as we have previously reported no sex 

difference following intrathecal morphine, although there was significant antinociception 

[24]. On the other hand, intracerebroventricular injection of morphine attenuated the 
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visceromotor response to a greater extent in male rats, suggesting supraspinal 

processing underlies the observed sex difference [37, 59, 60]. 

The present data are consistent with the hypothesis that the spino-PBn pathway 

contributes to the sex difference in CRD-evoked visceromotor response by more 

effectively activating a descending opioidergic inhibitory circuit in males. The PBn 

contains a dense population of both mu and delta opioid receptor immunoreactive 

fibers, as well as their respective endogenous ligands, endomorphin and enkephalin [10, 

31, 49-51]. Activation of the spino-PBn pathway has been shown to modulate visceral 

pain, presumably via the release of endogenous opioids. Therefore, activation of the 

spino-PBn circuit by noxious colorectal distension would have the end result of 

decreasing visceral pain sensitivity.  However, noxious CRD did not activate this circuit 

in females, and suggests that the failure of a noxious visceral stimulus to activate the 

spino-PBn pathway contributes to the overall increased visceral pain sensitivity 

observed in females.

In addition to the PBn, other brain regions may also contribute to the observed 

differences in viscerosensitivity and morphine analgesia noted in the present study, 

including the midbrain periaqueductal gray (PAG) and the rostral ventromedial medulla 

(RVM) which includes the nucleus raphe magnus.  Indeed, the PAG, and its descending 

projections to the RVM and spinal cord constitute an essential pathway for the pain-

suppressing effects of both exogenous and endogenous opiates.  Similar to the PBn, 

sex differences in MOR expression have been reported within the PAG, with males 

having 1.5-fold higher levels than females [37].  In addition, persistent inflammatory pain 

has been shown to selectively activate the PAG-RVM pathway in males, but not 
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females [28, 59].  Together with the present data, this suggests that sex differences in 

the anatomical and physiological organization of pain pathways may be more common 

than previously realized, and highlights the need for the inclusion of female subjects in 

all experimental studies examining the biological bases of somatic, visceral or orofacial 

pain.  

There are several additional mechanisms that may also contribute to the observed 

sex differences in morphine suppression of visceral pain. First, we show for the first time 

that overall, males have significantly higher levels of [3H]DAMGO binding within the 

PBn than females. Similarly, we show that MOR protein levels fluctuate across the 

estrous cycle, with overall lower levels of MOR immunoreactivity observed in females 

than males. As estradiol has been shown to induce rapid MOR internalization, thereby 

reducing available MOR for ligand binding [52,53], these results are not surprising.  

Estradiol has also been shown to uncouple MOR from GIRK channels [54], which would 

account for the decreased efficacy of morphine observed in the present study. Similar 

findings demonstrating reduced morphine potency during proestrus have also been 

reported following intra-PAG opiate administration [37]. Unfortunately, in our behavioral 

studies, we were not able to examine the impact of estrous on visceral sensitivity and 

activation of the spino-PBn pathway due to low numbers of animals in all three stages 

(estrus, diestrus and proestus).  

As discussed above, the results of the present study parallel our recent findings 

demonstrating significantly higher levels of MOR immunoreactivity and binding within 

the PAG of male versus female rats [37]. Together, these studies suggest that, overall, 

females have lower levels of MOR within several key pain-related brain regions which 
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likely provide the biological bases for the sexually dimorphic action of morphine.  These 

results further suggest that morphine may not be the drug of choice for the modulation 

of pain in females.  Clearly, additional studies are warranted. 

In summary, epidemiological studies have consistently shown that women are more 

likely to suffer from visceral pain than men [1]. Unfortunately, very little, if anything, is 

known regarding the etiology of these sex differences [21, 55-57].  The results of the 

present study demonstrate for the first time that noxious visceral stimulation selectively 

activates the spino-PBn pathway in males; as activation of this pathway would likely 

result in the release of endogenous opioid peptides in order to modulate the visceral 

pain, these studies suggest a potential anatomical circuit underlying sex differences in 

visceral pain. 



20

References

1. Berkley, K.J. Sex differences in pain. Behav. Brain Sciences 1997, 20:371-380.
2. Berman, S.; Munakata, J.; Naliboff, B.D.; Chang, L.; Mandelkern, M.; Silverman, 

D.; Kovalik, E.; Mayer, E.A. Gender differences in regional brain response to 
visceral pressure in IBS patients. Eur J Pain 2000, 4:157-172.

3. Chang, L. Review article: epidemiology and quality of life in functional 
gastrointestinal disorders. Aliment Pharmacol Ther 2004, 20 Suppl 7:31-39.

4. Naliboff, B.D.; Berman, S.; Chang, L.; Derbyshire, S.W.; Suyenobu, B.; Vogt, 
B.A.; Mandelkern, M.; Mayer, E.A. Sex-related differences in IBS patients: central 
processing of visceral stimuli. Gastroenterology 2003, 124:1738-1747.

5. Ji, Y.; Murphy, A.Z.; Traub, R.J. Estrogen modulates the visceromotor reflex and 
responses of spinal dorsal horn neurons to colorectal stimulation in the rat. J 
Neurosci 2003, 23:3908-3915.

6. Ji, Y.; Murphy, A.Z.; Traub, R.J. Estrogen modulation of morphine analgesia of 
visceral pain in female rats is supraspinally and peripherally mediated. J Pain 
2007, 8:494-502.

7. Tang, B.; Ji, Y.; Traub, R.J. Estrogen alters spinal NMDA receptor activity via a 
PKA signaling pathway in a visceral pain model in the rat. Pain 2008, 137:540-
549.

8. Bernard, J.F.; Huang, G.F.; Besson, J.M. The parabrachial area: 
electrophysiological evidence for an involvement in visceral nociceptive 
processes. J Neurophysiol 1994, 71:1646-1660.

9. Bester, H.; Matsumoto, N.; Besson, J.M.; Bernard, J.F. Further evidence for the 
involvement of the spinoparabrachial pathway in nociceptive processes: a c-Fos 
study in the rat. J Comp Neurol 1997, 383:439-458.

10. Cechetto, D.F.; Standaert, D.G.; Saper, C.B. Spinal and trigeminal dorsal horn 
projections to the parabrachial nucleus in the rat. J Comp Neurol 1985, 240:153-
160.

11. Bester, H.; Chapman, V.; Besson, J.M.; Bernard, J.F. Physiological properties of 
the lamina I spinoparabrachial neurons in the rat. J Neurophysiol 2000, 83:2239-
2259.

12. Hylden, J.L.; Anton, F.; Nahin, R.L. Spinal lamina I projection neurons in the rat: 
collateral innervation of parabrachial area and thalamus. Neuroscience 1989, 
28:27-37.

13. Light, A.R.; Sedivec, M.J.; Casale, E.J.; Jones, S.L. Physiological and 
morphological characteristics of spinal neurons projecting to the parabrachial 
region of the cat. Somatosens Mot Res 1993, 10:309-325.

14. Noguchi, K.; Ruda, M.A. Gene regulaton in an ascending nociceptive pathway: 
Inflammation -induced increase in preprotahykinin mRNA in rat lamina I spinal 
projection neurons. J Neurosci 1992, 12:2563-2572.

15. Traub, R.J.; Murphy, A. Colonic inflammation induces fos expression in the 
thoracolumbar spinal cord increasing activity in the spinoparabrachial pathway. 
Pain 2002, 95:93-102.



21

16. Chamberlin, N.L.; Saper, C.B. Topographic organization of cardiovascular 
responses to electrical and glutamate microstimulation of the parabrachial 
nucleus in the rat. J. Comp. Neurol. 1992, 326:245-262.

17. Fulwiler, C.E.; Saper, C.B. Subnuclear organization of the efferent connections of 
the parabrachial nucleus in the rat. Brain Res. Rev. 1984, 7:229-259.

18. Gauriau, C.; Bernard, J.F. Pain pathways and parabrachial circuits in the rat. Exp 
Physiol 2002, 87:251-258.

19. Bianchi, R.; Corsetti, G.; Rodella, L.; Tredici, G.; Gioia, M. Supraspinal 
connections and termination patterns of the parabrachial complex determined by 
the biocytin anterograde tract-tracing technique in the rat. J Anat 1998, 193:417-
430.

20. Borum, M.L. Irritable bowel syndrome. Prim Care 2001, 28:523-538, vi.
21. Case, A.M.; Reid, R.L. Effects of the menstrual cycle on medical disorders. Arch 

Intern Med 1998, 158:1405-1412.
22. Heitkemper, M.; Jarrett, M. Irritable bowel syndrome: causes and treatment. 

Gastroenterol Nurs 2000, 23:256-263.
23. Danzebrink, R.M.; Green, S.A.; Gebhart, G.F. Spinal mu and delta, but not 

kappa, opioid-receptor agonists attenuate responses to noxious colorectal 
distension in the rat. Pain 1995, 63:39-47.

24. Ji, Y.; Murphy, A.Z.; Traub, R.J. Sex differences in morphine-induced analgesia 
of visceral pain are supraspinally and peripherally mediated. Am J Physiol Regul 
Integr Comp Physiol 2006, 291:R307-314.

25. Hammond, D.L.; Presley, R.; Gogas, K.R.; Basbaum, A.I. Morphine or U-50,488 
suppresses Fos protein-like immunoreactivity in the spinal cord and nucleus 
tractus solitarii evoked by a noxious visceral stimulus in the rat. J Comp Neurol 
1992, 315:244-253.

26. Schmauss, C.; Shimohigashi, Y.; Jensen, T.S.; Rodbard, D.; Yaksh, T.L. Studies 
on spinal opiate receptor pharmacology. III. Analgetic effects of enkephalin 
dimers as measured by cutaneous-thermal and visceral- chemical evoked 
responses. Brain Res 1985, 337:209-215.

27. Schmauss, C.; Yaksh, T.L. In vivo studies on spinal opiate receptor systems 
mediating antinociception. II. Pharmacological profiles suggesting a differential 
association of mu, delta and kappa receptors with visceral chemical and 
cutaneous thermal stimuli in the rat. J Pharmacol Exp Ther 1984, 228:1-12.

28. Loyd, D.R.; Morgan, M.M.; Murphy, A.Z. Morphine preferentially activates the 
periaqueductal gray-rostral ventromedial medullary pathway in the male rat: a 
potential mechanism for sex differences in antinociception. Neuroscience 2007, 
147:456-468.

29. Wang, X.; Traub, R.J.; Murphy, A.Z. Persistent pain model reveals sex difference 
in morphine potency. Am J Physiol Regul Integr Comp Physiol 2006, 291:R300–
R306.

30. Chamberlin, N.L.; Mansour, A.; Watson, S.J.; Saper, C.B. Localization of mu-
opioid receptors on amygdaloid projection neurons in the parabrachial nucleus of 
the rat. Brain Res 1999, 827:198-204.

31. Greenwell, T.N.; Martin-Schild, S.; Inglis, F.M.; Zadina, J.E. Colocalization and 
shared distribution of endomorphins with substance P, calcitonin gene-related 



22

peptide, gamma-aminobutyric acid, and the mu opioid receptor. J Comp Neurol 
2007, 503:319-333.

32. Traub, R.J.; Pechman, P.; Iadarola, M.J.; Gebhart, G.F. Fos-like proteins in the 
lumbosacral spinal cord following noxious and non-noxious colorectal distention 
in the rat. Pain 1992, 49:393-403.

33. Watson, R.E.; Wiegand, S.J.; Clough, R.W.; Hoffman, G.E. Use of cryoprotectant 
to maintain longterm peptide immunoreactivity and tissue morphology. Peptides 
1986, 7:155-159.

34. Loyd, D.R.; Morgan, M.M.; Murphy, A.Z. Sexually dimorphic activation of the 
periaqueductal gray-rostral ventromedial medullary circuit during the 
development of tolerance to morphine in the rat. Eur J Neurosci 2008, 27:1517-
1524.

35. Chesterton, L.S.; Barlas, P.; Foster, N.E.; Baxter, G.D.; Wright, C.C. Gender 
differences in pressure pain threshold in healthy humans. Pain 2003, 101:259-
266.

36. Starowicz, K.; Maione, S.; Cristino, L.; Palazzo, E.; Marabese, I.; Rossi, F.; de 
Novellis, V.; Di Marzo, V. Tonic endovanilloid facilitation of glutamate release in 
brainstem descending antinociceptive pathways. J Neurosci 2007, 27:13739-
13749.

37. Loyd, D.R.; Wang, X.; Murphy, A.Z. Sex Differences in Mu Opioid Receptor 
Expression in the Rat Midbrain Periaqueductal Gray are Essential for Eliciting 
Sex Differences in Morphine Analgesia. J Neurosci 2008, 28:14007-17.

38. Schroder, H.D. Organization of the motoneurons innervating the pelvic muscles 
of the male rat. J Comp Neurol 1980, 192:567-587.

39. Schroder, H.D. Anatomical and pathoanatomical studies on the spinal efferent 
systems innervating pelvic structures. 1. Organization of spinal nuclei in animals. 
2. The nucleus X-pelvic motor system in man. J Auton Nerv Syst 1985, 14:23-48.

40. Semenenko, F.M.; Lumb, B.M. Projections of anterior hypothalamic neurones to 
the dorsal and ventral periaqueductal grey in the cat. Brain Res. 1992, 582:237-
245.

41. Arvidsson, U.; Riedl, M.; Chakrabarti, S.; Vulchanova, L.; Lee, J.H.; Nakano, 
A.H.; Lin, X.; Loh, H.H.; Law, P.Y.; Wessendorf, M.W.; et al. The kappa-opioid 
receptor is primarily postsynaptic: combined immunohistochemical localization of 
the receptor and endogenous opioids. Proc Natl Acad Sci U S A 1995, 92:5062-
5066.

42. Traub, R.J.; Stitt, S.; Gebhart, G.F. Attenuation of c-Fos expression in the rat 
lumbosacral spinal cord by morphine or tramadol following noxious colorectal 
distention. Brain Res 1995, 701:175-182.

43. Wang, G.; Tang, B.; Traub, R.J. Differential processing of noxious colonic input 
by thoracolumbar and lumbosacral dorsal horn neurons in the rat. J Neurophysiol 
2005, 94:3788-3794.

44. Boyer, J.S.; Morgan, M.M.; Craft, R.M. Microinjection of morphine into the rostral 
ventromedial medulla produces greater antinociception in male compared to 
female rats. Brain Res 1998, 796:315-318.



23

45. Cook, C.D.; Nickerson, M.D. Nociceptive sensitivity and opioid antinociception 
and antihyperalgesia in Freund's adjuvant-induced arthritic male and female rats. 
J Pharmacol Exp Ther 2005, 313:449-459.

46. Craft, R.M. Sex differences in opioid analgesia: "from mouse to man". Clin J Pain 
2003, 19:175-186.

47. Bernal, S.A.; Morgan, M.M.; Craft, R.M. PAG mu opioid receptor activation 
underlies sex differences in morphine antinociception. Behav Brain Res 2007, 
177:126-133.

48. Mogil, J.S.; Chesler, E.J.; Wilson, S.G.; Juraska, J.M.; Sternberg, W.F. Sex
differences in thermal nociception and morphine antinociception in rodents 
depend on genotype. Neurosci Biobehav Rev 2000, 24:375-389.

49. Arvidsson, U.; Dado, R.J.; Riedl, M.; Lee, J.H.; Law, P.Y.; Loh, H.H.; Elde, R.; 
Wessendorf, M.W. delta-Opioid receptor immunoreactivity: distribution in 
brainstem and spinal cord, and relationship to biogenic amines and enkephalin. J 
Neurosci 1995, 15:1215-1235.

50. Arvidsson, U.; Riedl, M.; Chakrabarti, S.; Lee, J.H.; Nakano, A.H.; Dado, R.J.; 
Loh, H.H.; Law, P.Y.; Wessendorf, M.W.; Elde, R. Distribution and targeting of a 
mu-opioid receptor (MOR1) in brain and spinal cord. J Neurosci 1995, 15:3328-
3341.

51. Standaert, D.G.; Watson, S.J.; Houghten, R.A.; Saper, C.B. Opioid peptide 
immunoreactivity in spinal and trigeminal dorsal horn neurons projecting to the 
parabrachial nucleus in the rat. J Neurosci 1986, 6:1220-1226.

52. Eckersell, C.B.; Popper, P.; Micevych, P.E. Estrogen-induced alteration of mu-
opioid receeptor immunoreactivity in the medial preoptic nucleus and medial 
amygdala. J Neurosci 1998, 18:3967-3976.

53. Micevych, P.E.; Eckersell, C.B.; Brecha, N.; Holland, K.L. Estrogen modulation of 
opioid and cholecystokinin systems in the limbic-hypothalamic circuit. Brain Res 
Bull 1997, 44:335-343.

54. Kelly, M.J.; Qiu, J.; Ronnekleiv, O.K. Estrogen modulation of G-protein-coupled 
receptor activation of potassium channels in the central nervous system. Ann N Y 
Acad Sci 2003, 1007:6-16.

55. Mayer, E.A.; Naliboff, B.; Lee, O.; Munakata, J.; Chang, L. Review article: 
gender-related differences in functional gastrointestinal disorders. Aliment 
Pharmacol Ther 1999, 13 Suppl 2:65-69.

56. Mayer, E.A.; Thompson, W.G.; Dent, J. Irritable bowel syndrome: diagnosis, 
subgrouping, management, and clinical trial design. Introduction. Am J Med 
1999, 107:1S-4S.

57. Toner, B.B.; Akman, D. Gender role and irritable bowel syndrome: literature 
review and hypothesis. Am J Gastroenterol 2000, 95:11-16.

58. Freeman M. The neuroendcroine control of the ovarian cycle of the rat. In: The 
Physiology of Reproduction, edited by Knobil E and Neill J. New York: Raven 
Press, 1988, p. 1893–1928.

59. Loyd, D.R.; Murphy, A.Z. Sex differences in the anatomical and functional 
organization of the periaqueductal gray-rostral ventromedial medullary pathway 
in the rat: a potential circuit mediating the sexually dimorphic actions of 
morphine. J Comp Neurol 2006, 496:723–738.



24

Figure Legends

Figure 1. Photomicrographs of Fluorogold (FG) injections into the PBn of male (A) and 
female (B) rats. LTDg, Laterodorsal tegmental nucleus; scp, superior cerebellar 
peduncle; Mo5, trigeminal motor nucleus.

Figure 2.  (A) Mean number of retrogradely labeled neurons observed within the L5-S1 
spinal cord following FG injection into the PBn of a male and female rat (left panel).  The 
right panels show the mean number of Fos+ cells localized within the L5-S1 spinal cord 
following colorectal distention or control. (B) Representative plot of the distribution of 
FG+ cells (black) and Fos+ cells (grey) within the male and female L6 spinal cord 
following colorectal distension. Each dot represents one cell. (C) Percentage of spino-
parabrachial neurons that contained Fos following noxious colorectal distention. Error 
bars represent S.E.M.

Figure 3.  Photomicrograph of the spinal cord dorsal horn showing examples of 
neurons retrogradely labeled from the parabrachial nucleus (FG; brown), neurons 
expressing CRD-induced Fos (black) and dual labeled cells (FG+Fos; indicated by red 
arrows) in males (A) and diestrus females (B). 

Figure  4. (A) Mean number of L5-S1 dorsal horn neurons expressing CRD-induced 
Fos following administration of saline or morphine in male and female rats. (B) 
Representative plots of the distribution of FG+ cells (black) and CRD-induced Fos (grey) 
within the male and female L6 spinal cord following administration of morphine. Each 
dot represents one cell. (C) Percentage of spino-parabrachial neurons that expressed 
CRD-induced Fos following administration of saline or morphine in males and females. 
Error bars represent S.E.M. 

Figure 5.  Representative photomicrographs of CRD-induced Fos (black dots) in the L6 
spinal cord following administration of saline or morphine in male and female rats.  

Figure 6.  Mu opioid receptor expression within the parabrachial nucleus of the male (A) 
and female (B) rat. (C) Densitometric analysis of the mean optical density of PBn MOR 
immunocytochemistry showed a significant reduction of MOR in proestrus females in 
comparison to males. vsc, ventral spinocerebellar tract; scp, superior cerebellar 
peduncle; MO5, trigeminal motor nucleus; LPBv, lateral parabrachial nucleus, ventral; 
MPBe, Medial parabrachial nucleus, external; LPBc, lateral parabrachial nucleus, 
central LPBe, lateral parabrachial nucleus, external; ovx, ovariectomized; Di, diestrus; 
Pro, proestrus; Est, estrus. Error bars represent S.E.M.  Optical density level for male = 
526; for female = 364. * indicates a significant mean difference, p<0.05.

Figure 7.  Photomicrograph depicting [3H]DAMGO receptor binding within the 
parabrachial nucleus of a male (A) and female (B) rat.  (C) Optical density values of 
[3H]DAMGO binding within the PBn of males and females. Error bars represent S.E.M.
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