96 research outputs found

    Hospital-wide natural language processing summarising the health data of 1 million patients

    Get PDF
    Electronic health records (EHRs) represent a major repository of real world clinical trajectories, interventions and outcomes. While modern enterprise EHR's try to capture data in structured standardised formats, a significant bulk of the available information captured in the EHR is still recorded only in unstructured text format and can only be transformed into structured codes by manual processes. Recently, Natural Language Processing (NLP) algorithms have reached a level of performance suitable for large scale and accurate information extraction from clinical text. Here we describe the application of open-source named-entity-recognition and linkage (NER+L) methods (CogStack, MedCAT) to the entire text content of a large UK hospital trust (King's College Hospital, London). The resulting dataset contains 157M SNOMED concepts generated from 9.5M documents for 1.07M patients over a period of 9 years. We present a summary of prevalence and disease onset as well as a patient embedding that captures major comorbidity patterns at scale. NLP has the potential to transform the health data lifecycle, through large-scale automation of a traditionally manual task

    A Knowledge Distillation Ensemble Framework for Predicting Short and Long-term Hospitalisation Outcomes from Electronic Health Records Data

    Get PDF
    The ability to perform accurate prognosis of patients is crucial for proactive clinical decision making, informed resource management and personalised care. Existing outcome prediction models suffer from a low recall of infrequent positive outcomes. We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission from time-series vital signs and laboratory results obtained within the first 24 hours of hospital admission. The stacked platform comprises two components: a) an unsupervised LSTM Autoencoder that learns an optimal representation of the time-series, using it to differentiate the less frequent patterns which conclude with an adverse event from the majority patterns that do not, and b) a gradient boosting model, which relies on the constructed representation to refine prediction, incorporating static features of demographics, admission details and clinical summaries. The model is used to assess a patient's risk of adversity over time and provides visual justifications of its prediction based on the patient's static features and dynamic signals. Results of three case studies for predicting mortality and ICU admission show that the model outperforms all existing outcome prediction models, achieving PR-AUC of 0.891 (95% CI: 0.878 - 0.969) in predicting mortality in ICU and general ward settings and 0.908 (95% CI: 0.870-0.935) in predicting ICU admission.Comment: 14 page

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetĀ® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetĀ® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Developmentā€™s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    The role of Hong Kong in the regional governance of water-borne transport service and infrastructure

    No full text
    abstractpublished_or_final_versiontocTransport Policy and PlanningMasterMaster of Arts in Transport Policy and Plannin

    Radiation-induced sarcoma in spine

    No full text
    Although radiotherapy is a part of treatment in cancers, it can also induce malignancy as a late complication. The presence of radiation-induced sarcomas in bone, although not very common, is acknowledged. The onset of radiation-induced sarcoma in the spine however, is not well recognized. We present here a case of radiation-induced fibrosarcoma in the T1 lamina and spinous process in a patient with a history of breast cancer treated with radiotherapy 30 years prior
    • ā€¦
    corecore