34 research outputs found
High-Field de Haas-van Alphen Effect in non-centrosymmetric CeCoGe3 and LaCoGe3
We report on de Haas-van Alphen effect measurements in the
non-centrosymmetric systems CeCoGe3 and LaCoGe3 in magnetic field up to 28
Tesla. In both compounds, two new high frequencies were observed in high
fields. The frequencies were not detected in previous lower field measurements.
The frequencies do not originate from magnetic breakdown, and, therefore, are
likely to be intrinsic features of the compounds. In CeCoGe3, the corresponding
effective masses are strongly enhanced, being of the order of 30 bare electron
masses.Comment: 3 pages, 4 figures, to be published in Proc. Int. Conf. Heavy
Electrons (ICHE2010) J. Phys. Soc. Jpn. 80 (2011
Disordered Fulde-Ferrel-Larkin-Ovchinnikov State in d-wave Superconductors
We study the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) superconducting state in
the disordered systems. We analyze the microscopic model, in which the d-wave
superconductivity is stabilized near the antiferromagnetic quantum critical
point, and investigate two kinds of disorder, namely, box disorder and point
disorder, on the basis of the Bogoliubov-deGennes (BdG) equation. The spatial
structure of modulated superconducting order parameter and the magnetic
properties in the disordered FFLO state are investigated. We point out the
possibility of "FFLO glass" state in the presence of strong point disorders,
which arises from the configurational degree of freedom of FFLO nodal plane.
The distribution function of local spin susceptibility is calculated and its
relation to the FFLO nodal plane is clarified. We discuss the NMR measurements
for CeCoIn_5.Comment: Submitted to New. J. Phys. a focus issue on "Superconductors with
Exotic Symmetries
Spin-Dependent Mass Enhancement under Magnetic Field in the Periodic Anderson Model
In order to study the mechanism of the mass enhancement in heavy fermion
compounds in the presence of magnetic field, we study the periodic Anderson
model using the fluctuation exchange approximation. The resulting value of the
mass enhancement factor z^{-1} can become up to 10, which is significantly
larger than that in the single-band Hubbard model. We show that the difference
between the magnitude of the mass enhancement factor of up spin (minority spin)
electrons z^{-1}_up and that of down spin (majority spin) electrons z^{-1}_down
increases by the applied magnetic field B//z, which is consistent with de
Haas-van Alphen measurements for CeCoIn_5, CeRu_2Si_2 and CePd_2Si_2. We
predict that z^{-1}_up >z^{-1}_down in many Ce compounds, whereas z^{-1}_up <
z^{-1}_down in Yb compounds.Comment: 5 pages, 4 figure
Magnetic phase diagram and electronic structure of UPt2Si2 at high magnetic fields: a possible field-induced Lifshitz transition
Theoretical Physic
Effects of La substitution on superconducting state of CeCoIn5
We report effects of La substitution on superconducting state of heavy
fermion superconductor CeCoIn5, as seen in transport and magnetization
measurements. As opposed to the case of conventional superconductors, pair
breaking by nonmagnetic La results in depression of Tc and indicates strong gap
anisotropy. Upper critical field Hc2 values decrease with increased La
concentration, but the critical field anisotropy, gamma=Hc2(a)/Hc2(c), does not
change in the Ce_{1-x}La_xCoIn5 (x=0-0.15). The electronic system is in the
clean limit for all values of x.Comment: Submitted to Phys. Rev.
The quantum critical point in CeRhIn_5: a resistivity study
The pressure--temperature phase diagram of CeRhIn_5 has been studied under
high magnetic field by resistivity measurements. Clear signatures of a quantum
critical point has been found at a critical pressure of p_c = 2.5 GPa. The
field induced magnetic state in the superconducting state is stable up to the
highest field. At p_c the antiferromagnetic ground-state under high magnetic
field collapses very rapidly. Clear signatures of p_c are the strong
enhancement of the resistivity in the normal state and of the inelastic
scattering term. No clear T2 temperature dependence could be found for
pressures above T_c. From the analysis of the upper critical field within a
strong coupling model we present the pressure dependence of the coupling
parameter lambda and the gyromagnetic ratio g. No signatures of a spatially
modulated order parameter could be evidenced. A detailed comparison with the
magnetic field--temperature phase diagram of CeCoIn_5 is given. The comparison
between CeRhIn_5 and CeCoIn_5 points out the importance to take into account
the field dependence of the effective mass in the calculation of the
superconducting upper critical field H_c2. It suggests also that when the
magnetic critical field H_(0) becomes lower than H_c2 (0)$, the persistence of
a superconducting pseudo-gap may stick the antiferromagnetism to H_c2 (0).Comment: 15 pages, 20 figures, to be published in J. Phys. Soc. Jp
Point-Contact Spectroscopy in MgB_2: from Fundamental Physics to Thin-Film Characterization
In this paper we highlight the advantages of using point-contact spectroscopy
(PCS) in multigap superconductors like MgB_2, both as a fundamental research
tool and as a non-destructive diagnostic technique for the optimization of
thin-film characteristics. We first present some results of crucial fundamental
interest obtained by directional PCS in MgB_2 single crystals, for example the
temperature dependence of the gaps and of the critical fields and the effect of
a magnetic field on the gap amplitudes. Then, we show how PCS can provide
useful information about the surface properties of MgB_2 thin films (e.g. Tc,
gap amplitude(s), clean or dirty-limit conditions) in view of their
optimization for the fabrication of tunnel and Josephson junctions for
applications in superconducting electronics.Comment: 11 pages, 7 figures; Proceedings of 6th EUCAS Conference (14-18
September 2003, Sorrento - Italy
Non-Centrosymmetric Heavy-Fermion Superconductors
In this chapter we discuss the physical properties of a particular family of
non-centrosymmetric superconductors belonging to the class heavy-fermion
compounds. This group includes the ferromagnet UIr and the antiferromagnets
CeRhSi3, CeIrSi3, CeCoGe3, CeIrGe3 and CePt3Si, of which all but CePt3Si become
superconducting only under pressure. Each of these superconductors has
intriguing and interesting properties. We first analyze CePt3Si, then review
CeRhSi3, CeIrSi3, CeCoGe3 and CeIrGe3, which are very similar to each other in
their magnetic and electrical properties, and finally discuss UIr. For each
material we discuss the crystal structure, magnetic order, occurrence of
superconductivity, phase diagram, characteristic parameters, superconducting
properties and pairing states. We present an overview of the similarities and
differences between all these six compounds at the end.Comment: To appear in "Non-Centrosymmetric Superconductors: Introduction and
Overview", Lecture Notes in Physics 847, edited by E. Bauer and M. Sigrist
(Springer-Verlag, Berlin Heidelberg, 2012) Chap. 2, pp. 35-7
Valence Fluctuations Revealed by Magnetic Field Scan: Comparison with Experiments in YbXCu_4 (X=In, Ag, Cd) and CeYIn_5 (Y=Ir, Rh)
The mechanism of how critical end points of the first-order valence
transitions (FOVT) are controlled by a magnetic field is discussed. We
demonstrate that the critical temperature is suppressed to be a quantum
critical point (QCP) by a magnetic field. This results explain the field
dependence of the isostructural FOVT observed in Ce metal and YbInCu_4.
Magnetic field scan can lead to reenter in a critical valence fluctuation
region. Even in the intermediate-valence materials, the QCP is induced by
applying a magnetic field, at which the magnetic susceptibility also diverges.
The driving force of the field-induced QCP is shown to be a cooperative
phenomenon of the Zeeman effect and the Kondo effect, which creates a distinct
energy scale from the Kondo temperature. The key concept is that the closeness
to the QCP of the FOVT is capital in understanding Ce- and Yb-based heavy
fermions. It explains the peculiar magnetic and transport responses in CeYIn_5
(Y=Ir, Rh) and metamagnetic transition in YbXCu_4 for X=In as well as the sharp
contrast between X=Ag and Cd.Comment: 14 pages, 9 figures, OPEN SELECT in J. Phys. Soc. Jp