42 research outputs found

    Advanced inorganic separators for alkaline batteries

    Get PDF
    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described

    Factors influence flexibility resistivity and zinc dendrite penetration rate of inorganic separators for alkaline batteries

    Get PDF
    Developmental work resulted in a formulation which can improve the flexibility of the inorganic-organic-type separator for silver-zinc and nickel-zinc alkaline batteries. The effects of various fillers and reactive organic additives on separator volume resistivity are described. The effects of various inert fillers on the zinc dendrite penetration rate of the separator are shown. Conclusions regarding the operating mechanism of the separator are presented

    Formulated plastic separators for soluble electrode cells

    Get PDF
    The fabrication and milling of membranes comprising a hydrochloric acid-insoluble sheet of a mixture of a rubber and a powdered ion transport material are described. The sheet can be present as a coating upon a flexible and porous substrate. These membranes can be used in oxidation-reduction electrical accumulator cells wherein the reduction of one member of a couple is accompanied by the by the oxidation of the other member of the couple on the other side of the cell and this must be accompanied by a change in chloride ion concentration in both sides

    Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage

    Get PDF
    Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000

    Method of making formulated plastic separators for soluble electrode cells

    Get PDF
    A method making a membrane comprised of a hydrochloric acid-insoluble sheet of a mixture of a rubber and a powdered ion transport material is disclosed. The sheet can be present as a coating upon a flexible and porous substrate. These membranes can be used in oxidation-reduction electrical accumulator cells wherein the reduction of one member of a couple is accompained by the oxidation of the other member of the couple on the other side of the cell and this must be accompained by a change in chloride ion concentration in both sides. The method comprises preparing a mixture of fine rubber particles, a solvent for the rubber and a powdered ion transport material. The mixture is formed into a sheet and dried to produce a microporous sheet. The ion transport material includes particles ranging from about 0.01 to 10 microns in size and comprises from 20 to 50 volume percent of the microporous sheet

    Improved, low cost inorganic-organic separators for rechargeable silver-zinc batteries

    Get PDF
    Several flexible, low-cost inorganic-organic separators with performance characteristics and cycle life equal to, or better than, the Lewis Research Center Astropower separator were developed. These new separators can be made on continuous-production equipment at about one-fourth the cost of the Astropower separator produced the same way. In test cells, these new separators demonstrate cycle life improvement, acceptable operating characteristics, and uniform current density. The various separator formulas, test cell construction, and data analysis are described

    Trace-element analysis of 1000 environmental samples per year using instrumental neutron activation analysis

    Get PDF
    The technology and methods developed at the Plum Brook Reactor to analyze 1000 samples per year and report data on as many as 56 elements are described. The manpower for the complete analysis of 20 to 24 samples per week required only 3 to 3.5 hours per sample. The solutions to problems encountered in sample preparation, irradiation, and counting are discussed. The automation of data reduction is described. Typical data on various sample matrices are presented

    Inorganic-organic separators for alkaline batteries

    Get PDF
    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating

    Gels as battery separators for soluble electrode cells

    Get PDF
    Gels are formed from silica powders and hydrochloric acid. The gels are then impregnated into a polymeric foam and the resultant sheet material is then used in applications where the transport of chloride ions is desired. Specifically disclosed is the utilization of the sheet in electrically rechargeable redox flow cells which find application in bulk power storage systems

    Inexpensive cross-linked polymeric separators made from water soluble polymers

    Get PDF
    Polyvinyl alcohol (PVA) crosslinked chemically with aldehyde reagents produces membranes which demonstrate oxidation resistance, dimensional stability, low ionic resistivity, low zincate diffusivity, and low zinc dendrite penetration rate which make them suitable for use as alkaline battery separators. They are intrinsically low in cost and environmental health and safety problems associated with commercial production appear minimal. Preparation, property measurements, and cell test results in Ni/Zn and Ag/Zn cells are described and discussed
    corecore