78 research outputs found

    On the water-bag model of dispersionless KP hierarchy

    Get PDF
    We investigate the bi-Hamiltonian structure of the waterbag model of dKP for two component case. One can establish the third-order and first-order Hamiltonian operator associated with the waterbag model. Also, the dispersive corrections are discussed.Comment: 19 page

    Partner symmetries and non-invariant solutions of four-dimensional heavenly equations

    Full text link
    We extend our method of partner symmetries to the hyperbolic complex Monge-Amp\`ere equation and the second heavenly equation of Pleba\~nski. We show the existence of partner symmetries and derive the relations between them for both equations. For certain simple choices of partner symmetries the resulting differential constraints together with the original heavenly equations are transformed to systems of linear equations by an appropriate Legendre transformation. The solutions of these linear equations are generically non-invariant. As a consequence we obtain explicitly new classes of heavenly metrics without Killing vectors.Comment: 20 pages, 1 table, corrected typo

    Hamiltonian structure of real Monge-Amp\`ere equations

    Full text link
    The real homogeneous Monge-Amp\`{e}re equation in one space and one time dimensions admits infinitely many Hamiltonian operators and is completely integrable by Magri's theorem. This remarkable property holds in arbitrary number of dimensions as well, so that among all integrable nonlinear evolution equations the real homogeneous Monge-Amp\`{e}re equation is distinguished as one that retains its character as an integrable system in multi-dimensions. This property can be traced back to the appearance of arbitrary functions in the Lagrangian formulation of the real homogeneous Monge-Amp\`ere equation which is degenerate and requires use of Dirac's theory of constraints for its Hamiltonian formulation. As in the case of most completely integrable systems the constraints are second class and Dirac brackets directly yield the Hamiltonian operators. The simplest Hamiltonian operator results in the Kac-Moody algebra of vector fields and functions on the unit circle.Comment: published in J. Phys. A 29 (1996) 325

    Who are you, Griselda? A replacement name for a new genus of the Asiatic short-tailed shrews (Mammalia, Eulipotyphla, Soricidae): molecular and morphological analyses with the discussion of tribal affinities

    Get PDF
    The first genetic study of the holotype of the Gansu short-tailed shrew, Blarinella griselda Thomas, 1912, is presented. The mitochondrial analysis demonstrated that the type specimen of B. griselda is close to several recently collected specimens from southern Gansu, northern Sichuan and Shaanxi, which are highly distinct from the two species of Asiatic short-tailed shrews of southern Sichuan, Yunnan, and Vietnam, >B. quadraticauda and B. wardi. Our analysis of four nuclear genes supported the placement of B. griselda as sister to B. quadraticauda / B. wardi, with the level of divergence between these two clades corresponding to that among genera of Soricinae. A new generic name, Parablarinella, is proposed for the Gansu short-tailed shrew. Karyotypes of Parablarinella griselda(2n = 49, NFa = 50) and B. quadraticauda (2n = 49, NFa = 62) from southern Gansu are described. The tribal affinities of Blarinellini and Blarinini are discussed.Copyright Anna A. Bannikova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    Hamiltonians separable in cartesian coordinates and third-order integrals of motion

    Full text link
    We present in this article all Hamiltonian systems in E(2) that are separable in cartesian coordinates and that admit a third-order integral, both in quantum and in classical mechanics. Many of these superintegrable systems are new, and it is seen that there exists a relation between quantum superintegrable potentials, invariant solutions of the Korteweg-De Vries equation and the Painlev\'e transcendents.Comment: 19 pages, Will be published in J. Math. Phy

    Superintegrability with third order invariants in quantum and classical mechanics

    Full text link
    We consider here the coexistence of first- and third-order integrals of motion in two dimensional classical and quantum mechanics. We find explicitly all potentials that admit such integrals, and all their integrals. Quantum superintegrable systems are found that have no classical analog, i.e. the potentials are proportional to \hbar^2, so their classical limit is free motion.Comment: 15 page

    Higher Order Quantum Superintegrability: a new "Painlev\'e conjecture"

    Full text link
    We review recent results on superintegrable quantum systems in a two-dimensional Euclidean space with the following properties. They are integrable because they allow the separation of variables in Cartesian coordinates and hence allow a specific integral of motion that is a second order polynomial in the momenta. Moreover, they are superintegrable because they allow an additional integral of order N>2N>2. Two types of such superintegrable potentials exist. The first type consists of "standard potentials" that satisfy linear differential equations. The second type consists of "exotic potentials" that satisfy nonlinear equations. For N=3N= 3, 4 and 5 these equations have the Painlev\'e property. We conjecture that this is true for all N≥3N\geq3. The two integrals X and Y commute with the Hamiltonian, but not with each other. Together they generate a polynomial algebra (for any NN) of integrals of motion. We show how this algebra can be used to calculate the energy spectrum and the wave functions.Comment: 23 pages, submitted as a contribution to the monographic volume "Integrability, Supersymmetry and Coherent States", a volume in honour of Professor V\'eronique Hussin. arXiv admin note: text overlap with arXiv:1703.0975

    Cyclic voles and shrews and non-cyclic mice in a marginal grassland within European temperate forest

    Get PDF
    Cyclic population dynamics of small mammals are not restricted to the boreal and arctic zones of Eurasia and North America, but long-term data series from lower latitudes are still less common. We demonstrated here the presence of periodic oscillations in small mammal populations in eastern Poland using 22-year (1986–2007) trapping data from marginal meadow and river valley grasslands located in the extensive temperate woodland of Białowieża Primeval Forest. The two most common species inhabiting meadows and river valleys, root vole Microtus oeconomus and common shrew Sorex araneus, exhibited synchronous periodic changes, characterised by a 3-year time lag as indicated by an autocorrelation function. Moreover, the cycles of these two species were synchronous within both habitats. Population dynamics of the striped field mouse Apodemus agrarius was not cyclic. However, this species regularly reached maximum density 1 year before the synchronized peak of root voles and common shrews, which may suggest the existence of interspecific competition. Dynamics of all three species was dominated by direct density-dependent process, whereas delayed density dependent feedback was significant only in the root vole and common shrew. Climatic factors acting in winter and spring (affecting mainly survival and initial reproduction rates) were more important than those acting in summer and autumn and affected significantly only the common shrew. High temperatures in winter and spring had positive effects on autumn-to-autumn changes in abundance of this species, whereas deep snow in combination with high rainfall in spring negatively affected population increase rates in common shrew
    • …
    corecore