15 research outputs found

    Recurrent Focal Segmental Glomerulosclerosis in Renal Allograft Recipients: Role of Human Leukocyte Antigen Mismatching and Other Clinical Variables

    Get PDF
    Recurrence of focal segmental glomerulosclerosis (FSGS) after renal transplantation impacts long-term graft survival and limits access to transplantation. We hypothesized that HLA donor/recipient matching could be used as a surrogate marker of recurrence. In a retrospective study of 42 pediatric and 77 adult subjects with primary FSGS, transplanted from 1990 to 2007 at a single center, we analyzed the degree of donor/recipient HLA compatibility and other clinical variables associated with FSGS recurrence. There were total of 131 allografts for primary FSGS (11 subjects were transplanted twice, and 1 had a third allograft) with 20 cases of FSGS recurrence (17 children) in the primary allograft, and two children who had FSGS recurrence in the second allograft. Fifty-two subjects (40%) were African American, and 66 (50%) Caucasians. Recurrent FSGS and controls were not different for age at transplant, gender, donor source, acute/chronic rejection episodes, and HLA matches. Recurrent FSGS was not associated with HLA mismatches; power equals 83%. Immunosuppressive regimen had no effect on recurrence of FSGS, P = .75. Recurrent FSGS is not associated with HLA mismatching, acute cellular or vascular rejection, and occurs primarily in the pediatric population

    Growth hormone axis in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) in children is associated with dramatic changes in the growth hormone (GH) and insulin-like growth factor (IGF-1) axis, resulting in growth retardation. Moderate-to-severe growth retardation in CKD is associated with increased morbidity and mortality. Renal failure is a state of GH resistance and not GH deficiency. Some mechanisms of GH resistance are: reduced density of GH receptors in target organs, impaired GH-activated post-receptor Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and reduced levels of free IGF-1 due to increased inhibitory IGF-binding proteins (IGFBPs). Treatment with recombinant human growth hormone (rhGH) has been proven to be safe and efficacious in children with CKD. Even though rhGH has been shown to improve catch-up growth and to allow the child to achieve normal adult height, the final adult height is still significantly below the genetic target. Growth retardation may persist after renal transplantation due to multiple factors, such as steroid use, decreased renal function and an abnormal GH–IGF1 axis. Those below age 6 years are the ones to benefit most from transplantation in demonstrating acceleration in linear growth. Newer treatment modalities targeting the GH resistance with recombinant human IGF-1 (rhIGF-1), recombinant human IGFBP3 (rhIGFBP3) and IGFBP displacers are under investigation and may prove to be more effective in treating growth failure in CKD

    Idiopathic chondrolysis of the hip

    No full text
    Idiopathic chondrolysis is a rare condition characterized by the ultimate loss of femoroacetabular articular cartilage seen in a child with no history of trauma, slipped capital femoral epiphysis, infection, prolonged immobilization, or any other previously described disorder. The diagnosis is often delayed secondary to the insidious onset of symptoms, progressive radiographic findings, and the absence of diagnostic laboratory test. Typical radiographic features include localized osteoporosis, subchondral erosions, femoral head changes, and reduction of the joint space. Later changes include complete loss of the joint space, subchondral cysts, trochanteric and epiphyseal physeal closure, osteophytes, and in severe cases, protrusio acetabuli, ankylosis, and osteoarthritis. Magnetic resonance imaging of the hip demonstrates cartilage loss, joint effusion, marrow edema, femoral and acetabular remodeling, significant regional muscle atrophy, and synovial enhancement. We report a case of Idiopathic chondrolysis of the hip in an 11-year-old Indian girl

    Transient osteoporosis of hip

    No full text
    We report a case of transient osteoporosis of the hip (TOH) in a 50-year-old man including the clinical presentation, diagnostic studies, management, and clinical progress. TOH is a rare self-limiting condition that typically affects middle-aged men or, less frequently, women in the third trimester of pregnancy. Affected individuals present clinically with acute hip pain, limping gait, and limited ranges of hip motion. TOH may begin spontaneously or after a minor trauma. Radiographs are typically unremarkable but magnetic resonance (MR) imaging studies yield findings consistent with bone marrow edema. TOH is referred to as regional migratory osteoporosis (RMO) if it travels to other joints or the contralateral hip. TOH often resembles osteonecrosis but the two conditions must be differentiated due to different prognoses and management approaches. The term TOH is often used interchangeably and synonymously with transient bone marrow edema (TBME)

    Synthesis and properties of CdSe Quantum Dot sensitized ZnO nanocomposites

    No full text
    In this work, zinc oxide nanocrystals with an average particle size of 13–22 nm are readily synthesized in aqueous medium by the wet synthesis method. Different sized nanocrystals obtained with change in calcination temperature are characterized by PL photoluminescence (PL) and UV–vis absorption spectroscopies, X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The average crystal size of the as prepared ZnO nanopowder is determined by XRD and was found to be in good agreement with the UV–vis absorption analysis. The quality of different ZnO nanopowders is confirmed by XRD spectra. On the basis of different characterizations, ZnO calcined for 1 h (due to its large size and less agglomeration) is chosen for synthesis of ZnO–CdSe nanocomposites with variable sized CdSe QD's (Quantum Dots). Nano-composites are synthesized using bifunctional linker molecule Mercaptopropionic Acid (MPA), and by directly adsorbing CdSe QD's over the surface of ZnO nanocrystals. The difference in charge transfer mechanism in ZnO–CdSe nanocomposites due to different crystallite size of CdSe QD's is studied. Higher crystallinity of ZnO–CdSe nanocomposites can be determined from XRD characterization. Size and mode of attachment in various ZnO–CdSe nanocomposites are determined by SEM studies

    Acute kidney injury in COVID-19 pediatric patients in North America: Analysis of the virtual pediatric systems data.

    No full text
    BackgroundDespite extensive research into acute kidney injury (AKI) in adults, research into the epidemiology, associated risk factors, treatment, and mortality of AKI in pediatric COVID-19 patients is understudied. Advancing understanding of this disease is crucial to further developing treatment and preventative care strategies to reduce morbidity and mortality.MethodsThis is a retrospective analysis of 2,546 COVID-19 pediatric patients (age ≤ 21 years) who were admitted the ICU in North America. Analysis of the Virtual Pediatric Systems (VPS) COVID-19 database was conducted between January 1, 2020, and June 30, 2021.ResultsOut of a total of 2,546 COVID positive pediatric patients, 10.8% (n = 274) were diagnosed with AKI. Significantly higher continuous and categorical outcomes in the AKI subset compared to the non-AKI cohort included: length of stay at the hospital (LOS) [9.04 (5.11-16.66) vs. 5.09 (2.58-9.94) days], Pediatric Index of Mortality (PIM) 2 probability of death [1.20 (0.86-3.83) vs. 0.96 (0.79-1.72)], PIM 3 probability of death [0.98 (0.72-2.93) vs. 0.78 (0.69-1.26)], mortality [crude OR (95% CI): 5.01 (2.89-8.70)], airway and respiratory support [1.63 (1.27-2.10)], cardio-respiratory support [3.57 (1.55-8.23)], kidney support [12.52 (5.30-29.58)], and vascular access [4.84 (3.70-6.32)].ConclusionsThis is one of the first large scale studies to analyze AKI among pediatric COVID-19 patients admitted to the ICU in North America. Although the course of the COVID-19 virus appears milder in the pediatric population, renal complications may result, increasing the risk of disease complication and mortality

    Stabilizing Terminal Ni(III)–Hydroxide Complex Using NNN-Pincer Ligands: Synthesis and Characterization

    No full text
    The reaction of [Ni­(COD)2] (COD; cyclooctadiene) in THF with the NNN-pincer ligand bis­(imino)­pyridyl (L1) reveals a susceptibility to oxidation in an inert atmosphere ([O2] level <0.5 ppm), resulting in a transient Ni:dioxygen adduct. This reactive intermediate abstracts a hydrogen atom from THF and stabilizes an uncommon Ni­(III) complex. The complex is crystallographically characterized by a molecular formula of [NiIII(L1··)2–(OH)] (1). Various isotopically labeled experiments (16O/18O) assertively endorse the origin of terminal oxygen based ligand in 1 due to the activation of molecular dioxygen. The presence of proton bound to the terminal oxygen in 1 is well supported by NMR, IR spectroscopy, DFT calculations, and hydrogen atom transfer (HAT) reactions promoted by 1. The observation of shakeup satellite peaks for the primary photoelectron lines of Ni­(2p) in the X-ray photoelectron spectroscopy (XPS) unambiguously confirms the paramagnetic signature associated with the distorted square planar nickel ion, which is consistent with the trivalent oxidation state assigned for the nickel ion in 1. The variable temperature magnetic susceptibility data of 1 shows dominant antiferromagnetic interactions exist among the paramagnetic centers, resulting in an overall S = 1/2 ground state. Variable temperature X-band EPR studies performed on 1 show evidence for the S = 1/2 ground state, which is consistent with magnetic data. The unusual g-tensor extracted for the ground state S = 1/2 is analyzed under a strong exchange limit of spin-coupled centers. The electronic structure predicted for 1 is in good agreement with theoretical calculations
    corecore