114 research outputs found

    Heroes of the engram

    Get PDF
    In 1904, Richard Semon introduced the term “engram” to describe the neural substrate responsible for (or at least important in) storing and recalling memories (i.e., a memory trace). The recent introduction of a vast array of powerful new tools to probe and manipulate memory function at the cell and neuronal circuit level has spurred an explosion of interest in studying the engram. However, the present “engram renaissance” was not borne in isolation but rather builds on a long tradition of memory research. We believe it is important to acknowledge the debts our current generation of scientists owes to those scientists who have offered key ideas, persevered through failed experiments and made important discoveries before us. Examining the past can also offer a fresh perspective on the present state and future promise of the field. Given the large amount of empirical advances made in recent years, it seems particularly timely to look back and review the scientists who introduced the seminal terminology, concepts, methodological approaches, and initial data pertaining to engrams. Rather than simply list their many accomplishments, here we color in some details of the lives and milestone contributions of our seven personal heroes of the engram (Richard Semon, Karl Lashley, Donald Hebb, Wilder Penfield, Brenda Milner, James McConnell, and Richard Thompson). In reviewing their historic role, we also illustrate how their work remains relevant to today’s studies

    Development and Validation of a Sensitive Entropy-Based Measure for the Water Maze

    Get PDF
    In the water maze, mice are trained to navigate to an escape platform located below the water's surface, and spatial learning is most commonly evaluated in a probe test in which the platform is removed from the pool. While contemporary tracking software provides precise positional information of mice for the duration of the probe test, existing performance measures (e.g., percent quadrant time, platform crossings) fail to exploit fully the richness of this positional data. Using the concept of entropy (H), here we develop a new measure that considers both how focused the search is and the degree to which searching is centered on the former platform location. To evaluate how H performs compared to existing measures of water maze performance we compiled five separate databases, containing more than 1600 mouse probe tests. Random selection of individual trials from respective databases then allowed us to simulate experiments with varying sample and effect sizes. Using this Monte Carlo-based method, we found that H outperformed existing measures in its ability to detect group differences over a range of sample or effect sizes. Additionally, we validated the new measure using three models of experimentally induced hippocampal dysfunction: (1) complete hippocampal lesions, (2) genetic deletion of αCaMKII, a gene implicated in hippocampal behavioral and synaptic plasticity, and (3) a mouse model of Alzheimer's disease. Together, these data indicate that H offers greater sensitivity than existing measures, most likely because it exploits the richness of the precise positional information of the mouse throughout the probe test

    Neurogenesis-mediated forgetting minimizes proactive interference.

    Get PDF
    Established memories may interfere with the encoding of new memories, particularly when existing and new memories overlap in content. By manipulating levels of hippocampal neurogenesis, here we show that neurogenesis regulates this form of proactive interference. Increasing hippocampal neurogenesis weakens existing memories and, in doing so, facilitates the encoding of new, conflicting (but not non-conflicting) information in mice. Conversely, decreasing neurogenesis stabilizes existing memories, and impedes the encoding of new, conflicting information. These results suggest that reduced proactive interference is an adaptive benefit of neurogenesis-induced forgetting

    Optogenetic inhibitor of the transcription factor CREB

    Get PDF
    Current approaches for optogenetic control of transcription do not mimic the activity of endogenous transcription factors, which act at numerous sites in the genome in a complex interplay with other factors. Optogenetic control of dominant negative versions of endogenous transcription factors provides a mechanism for mimicking the natural regulation of gene expression. Here we describe opto-DN-CREB, a blue light controlled inhibitor of the transcription factor CREB created by fusing the dominant negative inhibitor A-CREB to photoactive yellow protein (PYP). A light driven conformational change in PYP prevents coiled-coil formation between A-CREB and CREB, thereby activating CREB. Optogenetic control of CREB function was characterized in vitro, in HEK293T cells, and in neurons where blue light enabled control of expression of the CREB targets NR4A2 and c-Fos. Dominant negative inhibitors exist for numerous transcription factors; linking these to optogenetic domains offers a general approach for spatiotemporal control of native transcriptional events

    Optogenetic inhibitor of the transcription factor CREB

    Get PDF
    Current approaches for optogenetic control of transcription do not mimic the activity of endogenous transcription factors, which act at numerous sites in the genome in a complex interplay with other factors. Optogenetic control of dominant negative versions of endogenous transcription factors provides a mechanism for mimicking the natural regulation of gene expression. Here we describe opto-DN-CREB, a blue light controlled inhibitor of the transcription factor CREB created by fusing the dominant negative inhibitor A-CREB to photoactive yellow protein (PYP). A light driven conformational change in PYP prevents coiled-coil formation between A-CREB and CREB, thereby activating CREB. Optogenetic control of CREB function was characterized in vitro, in HEK293T cells, and in neurons where blue light enabled control of expression of the CREB targets NR4A2 and c-Fos. Dominant negative inhibitors exist for numerous transcription factors; linking these to optogenetic domains offers a general approach for spatiotemporal control of native transcriptional events

    p73 Regulates Neurodegeneration and Phospho-Tau Accumulation during Aging and Alzheimer's Disease

    Get PDF
    SummaryThe genetic mechanisms that regulate neurodegeneration are only poorly understood. We show that the loss of one allele of the p53 family member, p73, makes mice susceptible to neurodegeneration as a consequence of aging or Alzheimer's disease (AD). Behavioral analyses demonstrated that old, but not young, p73+/− mice displayed reduced motor and cognitive function, CNS atrophy, and neuronal degeneration. Unexpectedly, brains of aged p73+/− mice demonstrated dramatic accumulations of phospho-tau (P-tau)-positive filaments. Moreover, when crossed to a mouse model of AD expressing a mutant amyloid precursor protein, brains of these mice showed neuronal degeneration and early and robust formation of tangle-like structures containing P-tau. The increase in P-tau was likely mediated by JNK; in p73+/− neurons, the activity of the p73 target JNK was enhanced, and JNK regulated P-tau levels. Thus, p73 is essential for preventing neurodegeneration, and haploinsufficiency for p73 may be a susceptibility factor for AD and other neurodegenerative disorders

    Finding the engram.

    Get PDF
    Many attempts have been made to localize the physical trace of a memory, or engram, in the brain. However, until recently, engrams have remained largely elusive. In this Review, we develop four defining criteria that enable us to critically assess the recent progress that has been made towards finding the engram. Recent \u27capture\u27 studies use novel approaches to tag populations of neurons that are active during memory encoding, thereby allowing these engram-associated neurons to be manipulated at later times. We propose that findings from these capture studies represent considerable progress in allowing us to observe, erase and express the engram

    Continuing the search for the engram: examining the mechanism of fear memories

    No full text
    The goal of my research is to gain insight using rodent models into the fundamental molecular, cellular and systems that make up the base of memory formation. My work focuses on fear memories. Aberrant fear and/or anxiety may be at the heart of many psychiatric disorders. In this article, I review the results of my research group; these results show that particular neurons in the lateral amygdala, a brain region important for fear, are specifically involved in particular fear memories. We started by showing that the transcription factor CREB (cAMP/Ca2+ response element binding protein) plays a key role in the formation of fear memories. Next, we used viral vectors to overexpress CREB in a subset of lateral amygdala neurons. This not only facilitated fear memory formation but also “drove” the memory into the neurons with relatively increased CREB function. Finally, we showed that selective ablation of the neurons overexpressing CREB in the lateral amygdala selectively erased the fear memory. These findings are the first to show disruption of a specific memory by disrupting select neurons within a distributed network

    Memory engrams: Recalling the past and imagining the future

    No full text
    In 1904, Richard Semon introduced the term “engram” to describe the neural substrate for storing memories. An experience, Semon proposed, activates a subset of cells that undergo off-line, persistent chemical and/or physical changes to become an engram. Subsequent reactivation of this engram induces memory retrieval. Although Semon’s contributions were largely ignored in his lifetime, new technologies that allow researchers to image and manipulate the brain at the level of individual neurons has reinvigorated engram research. We review recent progress in studying engrams, including an evaluation of evidence for the existence of engrams, the importance of intrinsic excitability and synaptic plasticity in engrams, and the lifetime of an engram. Together, these findings are beginning to define an engram as the basic unit of memory
    corecore