60 research outputs found

    Structural Studies of West Nile Virus in Complex with Neutralizing Antibodies.

    Get PDF
    West Nile virus (WNV) is a positive strand RNA virus in the family Flaviviridae, which includes members such as dengue, Japanese encephalitis, tick-borne encephalitis, yellow fever and Hepatitis C. As with other members of the genus, it is arthropod transmitted and has recently established itself as an endemic virus in the United States. Although most infections are asymptomatic, clinical manifestations of WNV include encephalitis and death. We have been interested in investigating the nature of the immune response with particular emphasis on the role of antibodies in reducing the level of infection. We have used a combination of techniques, but primarily structure, as a tool to probe the nature of antibody-mediated virus neutralization. Our results suggest that neutralization of virus particles is more complex than originally envisioned, with multiple mechanisms utilized. Using a combination of X-ray crystallography and cryo-electron microscopy, several virus-antibody complexes have been determined at pseudo-atomic resolution. These studies suggest the following: 1) flavivirus particles exhibit dynamic motions or breathing that transiently expose cryptic epitopes; 2) although there are 180 potential binding sites for each monoclonal antibody the quasi-equivalent nature of the virion usually permits only a subset of sites to be utilized; 3) the availability of these sites, the epitope itself, and the avidity of antibody directly influence the mechanism of neutralization; and 4) particles thought to be incapable of infecting cells, so-called immature viruses, may play a critical role in immune surveillance and reactivity. The structure of the flavivirus virion and complexes of monoclonal antibodies will be presented along with data to support mechanisms antibody-mediated flavivirus neutralizatio

    Neutralization mechanism of a highly potent antibody against Zika virus

    Get PDF
    The rapid spread of Zika virus (ZIKV), which causes microcephaly and Guillain-Barré syndrome, signals an urgency to identify therapeutics. Recent efforts to rescreen dengue virus human antibodies for ZIKV cross-neutralization activity showed antibody C10 as one of the most potent. To investigate the ability of the antibody to block fusion, we determined the cryoEM structures of the C10-ZIKV complex at pH levels mimicking the extracellular (pH8.0), early (pH6.5) and late endosomal (pH5.0) environments. The 4.0 Å resolution pH8.0 complex structure shows that the antibody binds to E proteins residues at the intra-dimer interface, and the virus quaternary structure-dependent inter-dimer and inter-raft interfaces. At pH6.5, antibody C10 locks all virus surface E proteins, and at pH5.0, it locks the E protein raft structure, suggesting that it prevents the structural rearrangement of the E proteins during the fusion event—a vital step for infection. This suggests antibody C10 could be a good therapeutic candidate

    CD-loop Extension in Zika Virus Envelope Protein Key for Stability and Pathogenesis

    Get PDF
    With severe disease manifestations including microcephaly, congenital malformation, and Guillain-Barré syndrome, Zika virus (ZIKV) remains a persistent global public health threat. Despite antigenic similarities with dengue viruses, structural studies have suggested the extended CD-loop and hydrogen-bonding interaction network within the ZIKV envelope protein contribute to stability differences between the viral families. This enhanced stability may lead to the augmented infection, disease manifestation, and persistence in body fluids seen following ZIKV infection. To examine the role of these motifs in infection, we generated a series of ZIKV recombinant viruses that disrupted the hydrogen-bonding network (350A, 351A, and 350A/351A) or the CD-loop extension (Δ346). Our results demonstrate a key role for the ZIKV extended CD-loop in cell-type-dependent replication, virion stability, and in vivo pathogenesis. Importantly, the Δ346 mutant maintains similar antigenicity to wild-type virus, opening the possibility for its use as a live-attenuated vaccine platform for ZIKV and other clinically relevant flaviviruses

    A potent anti-dengue human antibody preferentially recognizes the conformation of E protein monomers assembled on the virus surface

    Get PDF
    Dengue virus (DENV), which consists of four serotypes (DENV1-4), infects over 400million people annually. Previous studies have indicated most human monoclonal antibodies (HMAbs) from dengue patients are cross-reactive and poorly neutralizing. Rare neutralizing HMAbs are usually serotype-specific and bind to quaternary structure-dependent epitopes. We determined the structure of DENV1 complexed with Fab fragments of a highly potent HMAb 1F4 to 6Å resolution by cryo-EM. Although HMAb 1F4 appeared to bind to virus and not E proteins in ELISAs in the previous study, our structure showed that the epitope is located within an envelope (E) protein monomer, and not across neighboring E proteins. The Fab molecules bind to domain I (DI), and DI-DII hinge of the E protein. We also showed that HMAb 1F4 can neutralize DENV at different stages of viral entry in a cell type and receptor dependent manner. The structure reveals the mechanism by which this potent and specific antibody blocks viral infection.Subject Categories Microbiology, Virology & Host Pathogen Interaction; Immunolog

    Structure and neutralization mechanism of a human antibody targeting a complex Epitope on Zika virus

    Get PDF
    We currently have an incomplete understanding of why only a fraction of human antibodies that bind to flaviviruses block infection of cells. Here we define the footprint of a strongly neutralizing human monoclonal antibody (mAb G9E) with Zika virus (ZIKV) by both X-ray crystallography and cryo-electron microscopy. Flavivirus envelope (E) glycoproteins are present as homodimers on the virion surface, and G9E bound to a quaternary structure epitope spanning both E protomers forming a homodimer. As G9E mainly neutralized ZIKV by blocking a step after viral attachment to cells, we tested if the neutralization mechanism of G9E was dependent on the mAb cross-linking E molecules and blocking low-pH triggered conformational changes required for viral membrane fusion. We introduced targeted mutations to the G9E paratope to create recombinant antibodies that bound to the ZIKV envelope without cross-linking E protomers. The G9E paratope mutants that bound to a restricted epitope on one protomer poorly neutralized ZIKV compared to the wild-type mAb, demonstrating that the neutralization mechanism depended on the ability of G9E to cross-link E proteins. In cell-free low pH triggered viral fusion assay, both wild-type G9E, and epitope restricted paratope mutant G9E bound to ZIKV but only the wild-type G9E blocked fusion. We propose that, beyond antibody binding strength, the ability of human antibodies to cross-link E-proteins is a critical determinant of flavivirus neutralization potency

    Structural Optimization and De Novo Design of Dengue Virus Entry Inhibitory Peptides

    Get PDF
    Viral fusogenic envelope proteins are important targets for the development of inhibitors of viral entry. We report an approach for the computational design of peptide inhibitors of the dengue 2 virus (DENV-2) envelope (E) protein using high-resolution structural data from a pre-entry dimeric form of the protein. By using predictive strategies together with computational optimization of binding “pseudoenergies”, we were able to design multiple peptide sequences that showed low micromolar viral entry inhibitory activity. The two most active peptides, DN57opt and 1OAN1, were designed to displace regions in the domain II hinge, and the first domain I/domain II beta sheet connection, respectively, and show fifty percent inhibitory concentrations of 8 and 7 µM respectively in a focus forming unit assay. The antiviral peptides were shown to interfere with virus:cell binding, interact directly with the E proteins and also cause changes to the viral surface using biolayer interferometry and cryo-electron microscopy, respectively. These peptides may be useful for characterization of intermediate states in the membrane fusion process, investigation of DENV receptor molecules, and as lead compounds for drug discovery

    2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase

    Get PDF
    RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNAs in vitro

    The Interplay of Dengue Virus Morphological Diversity and Human Antibodies

    No full text
    10.1016/j.tim.2015.12.004Trends in Microbiology244284-29
    corecore