28 research outputs found

    Mechanisms of biotin-regulated gene expression in microbes

    Get PDF
    AbstractBiotin is an essential micronutrient that acts as a co-factor for biotin-dependent metabolic enzymes. In bacteria, the supply of biotin can be achieved by de novo synthesis or import from exogenous sources. Certain bacteria are able to obtain biotin through both mechanisms while others can only fulfill their biotin requirement through de novo synthesis. Inability to fulfill their cellular demand for biotin can have detrimental consequences on cell viability and virulence. Therefore understanding the transcriptional mechanisms that regulate biotin biosynthesis and transport will extend our knowledge about bacterial survival and metabolic adaptation during pathogenesis when the supply of biotin is limited. The most extensively characterized protein that regulates biotin synthesis and uptake is BirA. In certain bacteria, such as Escherichia coli and Staphylococcus aureus, BirA is a bi-functional protein that serves as a transcriptional repressor to regulate biotin biosynthesis genes, as well as acting as a ligase to catalyze the biotinylation of biotin-dependent enzymes. Recent studies have identified two other proteins that also regulate biotin synthesis and transport, namely BioQ and BioR. This review summarizes the different transcriptional repressors and their mechanism of action. Moreover, the ability to regulate the expression of target genes through the activity of a vitamin, such as biotin, may have biotechnological applications in synthetic biology

    Combining random microseed matrix screening and the magic triangle for the efficient structure solution of a potential lysin from bacteriophage P68

    Get PDF
    Two commonly encountered bottlenecks in the structure determination of a protein by X-ray crystallography are screening for conditions that give high-quality crystals and, in the case of novel structures, finding derivatization conditions for experimental phasing. In this study, the phasing molecule 5-amino-2,4,6-triiodoisophthalic acid (I3C) was added to a random microseed matrix screen to generate high-quality crystals derivatized with I3C in a single optimization experiment. I3C, often referred to as the magic triangle, contains an aromatic ring scaffold with three bound I atoms. This approach was applied to efficiently phase the structures of hen egg-white lysozyme and the N-terminal domain of the Orf11 protein from Staphylococcus phage P68 (Orf11 NTD) using SAD phasing. The structure of Orf11 NTD suggests that it may play a role as a virion-associated lysin or endolysin.Jia Quyen Truong, Santosh Panjikar, Linda Shearwin-Whyatt, John B. Bruning and Keith E. Shearwi

    The pIT5 Plasmid Series, an Improved Toolkit for Repeated Genome Integration in E. coli

    Get PDF
    Published: June 30, 2021We describe a new set of tools for inserting DNA into the bacterial chromosome. The system uses site-specific recombination reactions carried out by bacteriophage integrases to integrate plasmids at up to eight phage attachment sites in E. coli MG1655. The introduction of mutant loxP sites in the integrating plasmids allows repeated removal of antibiotic resistance genes and other plasmid sequences without danger of inducing chromosomal rearrangements. The protocol for Cre-mediated antibiotic resistance gene removal is greatly simplified by introducing the Cre plasmid by phage infection. Finally, we have also developed a set of four independently inducible expression modules with tight control and high dynamic range which can be inserted at specific chromosomal locations.Nan Hao, Qinqin Chen, Ian B. Dodd, and Keith E. Shearwi

    Efficient O-demethylation of lignin monoaromatics using the peroxygenase activity of cytochrome P450 enzymes

    Get PDF
    A crucial reaction in harnessing renewable carbon from lignin is O-demethylation. We demonstrate the selective O-demethylation of syringol and guaiacol using different cytochrome P450 enzymes. These can efficiently use hydrogen peroxide which, when compared to nicotinamide cofactor-dependent monooxygenases and synthetic methods, allows for cheap and clean O-demethylation of lignin-derived aromatics.Alix C. Harlington, Keith E. Shearwin, Stephen G. Bell and Fiona Whela

    Derivatization of protein crystals with I3C using random microseed matrix screening

    Get PDF
    Protein structure elucidation using X-ray crystallography requires both high quality diffracting crystals and computational solution of the diffraction phase problem. Novel structures that lack a suitable homology model are often derivatized with heavy atoms to provide experimental phase information. The presented protocol efficiently generates derivatized protein crystals by combining random microseeding matrix screening with derivatization with a heavy atom molecule I3C (5-amino-2,4,6-triiodoisophthalic acid). By incorporating I3C into the crystal lattice, the diffraction phase problem can be efficiently solved using single wavelength anomalous dispersion (SAD) phasing. The equilateral triangle arrangement of iodine atoms in I3C allows for rapid validation of a correct anomalous substructure. This protocol will be useful to structural biologists who solve macromolecular structures using crystallography-based techniques with interest in experimental phasing.Jia Quyen Truong, Stephanie Nguyen, John B. Bruning, Keith E. Shearwi

    When push comes to shove - RNA polymerase and DNA-bound protein roadblocks

    Get PDF
    In recent years, transcriptional roadblocking has emerged as a crucial regulatory mechanism in gene expression, whereby other DNA-bound obstacles can block the progression of transcribing RNA polymerase (RNAP), leading to RNAP pausing and ultimately dissociation from the DNA template. In this review, we discuss the mechanisms by which transcriptional roadblocks can impede RNAP progression, as well as how RNAP can overcome these obstacles to continue transcription. We examine different DNA-binding proteins involved in transcriptional roadblocking and their biophysical properties that determine their effectiveness in blocking RNAP progression. The catalytically dead CRISPR-Cas (dCas) protein is used as an example of an engineered programmable roadblock, and the current literature in understanding the polarity of dCas roadblocking is also discussed. Finally, we delve into a stochastic model of transcriptional roadblocking and highlight the importance of transcription factor binding kinetics and its resistance to dislodgement by an elongating RNAP in determining the strength of a roadblock.Nan Hao, Alana J. Donnelly, Ian B. Dodd, Keith E. Shearwi

    Analysis of infection time courses shows CII levels determine the frequency of lysogeny in phage 186

    Get PDF
    Published: 29 September 2021Engineered phage with properties optimised for the treatment of bacterial infections hold great promise, but require careful characterisation by a number of approaches. Phage–bacteria infection time courses, where populations of bacteriophage and bacteria are mixed and followed over many infection cycles, can be used to deduce properties of phage infection at the individual cell level. Here, we apply this approach to analysis of infection of Escherichia coli by the temperate bacteriophage 186 and explore which properties of the infection process can be reliably inferred. By applying established modelling methods to such data, we extract the frequency at which phage 186 chooses the lysogenic pathway after infection, and show that lysogenisation increases in a graded manner with increased expression of the lysogenic establishment factor CII. The data also suggest that, like phage λ, the rate of lysogeny of phage 186 increases with multiple infections.Nan Hao, Dylan Agnew, Sandeep Krishna, Ian B. Dodd and Keith E. Shearwi

    RNA polymerase pausing at a protein roadblock can enhance transcriptional interference by promoter occlusion

    Get PDF
    Convergent promoters exert transcriptional interference (TI) by several mechanisms including promoter occlusion, where elongating RNA polymerases (RNAPs) block access to a promoter. Here, we tested whether pausing of RNAPs by obstructive DNA-bound proteins can enhance TI by promoter occlusion. Using the Lac repressor as a 'roadblock' to induce pausing over a target promoter, we found only a small increase in TI, with mathematical modelling suggesting that rapid termination of the stalled RNAP was limiting the occlusion effect. As predicted, the roadblock-enhanced occlusion was significantly increased in the absence of the Mfd terminator protein. Thus, protein roadblocking of RNAP may cause pause-enhanced occlusion throughout genomes, and the removal of stalled RNAP may be needed to minimize unwanted TI.Nan Hao, Michael T. Crooks, Adam C. Palmer, Ian B. Dodd, Keith E. Shearwi

    Instability of CII is needed for efficient switching between lytic and lysogenic development in bacteriophage 186

    Get PDF
    The CII protein of temperate coliphage 186, like the unrelated CII protein of phage λ, is a transcriptional activator that primes expression of the CI immunity repressor and is critical for efficient establishment of lysogeny. 186-CII is also highly unstable, and we show that in vivo degradation is mediated by both FtsH and RseP. We investigated the role of CII instability by constructing a 186 phage encoding a protease resistant CII. The stabilised-CII phage was defective in the lysis-lysogeny decision: choosing lysogeny with close to 100% frequency after infection, and forming prophages that were defective in entering lytic development after UV treatment. While lysogenic CI concentration was unaffected by CII stabilisation, lysogenic transcription and CI expression was elevated after UV. A stochastic model of the 186 network after infection indicated that an unstable CII allowed a rapid increase in CI expression without a large overshoot of the lysogenic level, suggesting that instability enables a decisive commitment to lysogeny with a rapid attainment of sensitivity to prophage induction.Iain M Murchland, Alexandra Ahlgren-Berg, Julian M J Pietsch, Alejandra Isabel, Ian B Dodd, Keith E Shearwi

    Advanced resistance studies identify two discrete mechanisms in staphylococcus aureus to overcome antibacterial compounds that target biotin protein ligase

    Get PDF
    Biotin protein ligase (BPL) inhibitors are a novel class of antibacterial that target clinically important methicillin-resistant Staphylococcus aureus (S. aureus). In S. aureus, BPL is a bifunctional protein responsible for enzymatic biotinylation of two biotin-dependent enzymes, as well as serving as a transcriptional repressor that controls biotin synthesis and import. In this report, we investigate the mechanisms of action and resistance for a potent anti-BPL, an antibacterial compound, biotinyl-acylsulfamide adenosine (BASA). We show that BASA acts by both inhibiting the enzymatic activity of BPL in vitro, as well as functioning as a transcription co-repressor. A low spontaneous resistance rate was measured for the compound (<10-9) and whole-genome sequencing of strains evolved during serial passaging in the presence of BASA identified two discrete resistance mechanisms. In the first, deletion of the biotin-dependent enzyme pyruvate carboxylase is proposed to prioritize the utilization of bioavailable biotin for the essential enzyme acetyl-CoA carboxylase. In the second, a D200E missense mutation in BPL reduced DNA binding in vitro and transcriptional repression in vivo. We propose that this second resistance mechanism promotes bioavailability of biotin by derepressing its synthesis and import, such that free biotin may outcompete the inhibitor for binding BPL. This study provides new insights into the molecular mechanisms governing antibacterial activity and resistance of BPL inhibitors in S. aureus.Andrew J. Hayes, Jiulia Satiaputra, Louise M. Sternicki, Ashleigh S. Paparella, Zikai Feng, Kwang J. Lee ... et al
    corecore