471 research outputs found

    La sécurité privée au Canada : quelques questions et réponses

    Get PDF

    On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems

    Get PDF
    The widely used Bruggeman equations correlate tortuosity factors of porous media with their porosity. Finding diverse application from optics to bubble formation, it received considerable attention in fuel cell and battery research, recently. The ability to estimate tortuous mass transport resistance based on porosity alone is attractive, because direct access to the tortuosity factors is notoriously difficult. The correlation, however, has limitations, which are not widely appreciated owing to the limited accessibility of the original manuscript. We retrace Bruggeman's derivation, together with its initial assumptions, and comment on validity and limitations apparent from the original work to offer some guidance on its use

    Thermal Runaway of a Li-Ion Battery Studied by Combined ARC and Multi-Length Scale X-ray CT

    Get PDF
    Lithium ion battery failure occurs across multiple length scales. In this work, the properties of thermal failure and its effects on electrode materials were investigated in a commercial battery using a combination of accelerating rate calorimetry (ARC) and multi-length scale X-ray computed tomography (CT). ARC measured the heat dissipated from the cell during thermal runaway and enabled the identification of key thermal failure characteristics such as onset temperature and the rate of heat generation during the failure. Analysis before and after failure using scanning electron microscopy (SEM) and X-ray CT were performed to reveal the effects of failure on the architecture of the whole cell and microstructure of the cathode material. Mechanical deformations to the cell architecture were revealed due to gas generation at elevated temperatures (>200 °C). The extreme conditions during thermal runaway caused the cathode particles to reduce in size by a factor of two. Electrode surface analysis revealed surface deposits on both the anode and cathode materials. The link between electrode microstructure and heat generation within a cell during failure is analysed and compared to commercially available lithium ion cells of varying cathode chemistries. The optimisation of electrode designs for safer battery materials is discussed

    X-Ray Computed Tomography for Failure Mechanism Characterisation within Layered Pouch Cells: Part II

    Get PDF
    In Part I (1), the failure response of a 1 Ah layered pouch cell with a commercially available nickel manganese cobalt (NMC) cathode and graphite anode at 100% state of charge (SOC) (4.2 V) was investigated for two failure mechanisms: thermal and mechanical. The architectural changes to the whole-cell and deformations of the electrode layers are analysed after failure for both mechanisms. A methodology for post-mortem cell disassembly and sample preparation is proposed and demonstrated to effectively analyse the changes to the electrode surfaces, bulk microstructures and particle morphologies. Furthermore, insights into critical architectural weak points in LIB pouch cells, electrode behaviours and particle cracking are provided using invasive and non-invasive X-ray computed tomography techniques. The findings in this work demonstrate methods by which LIB failure can be investigated and assessed

    Characteristics of a gold-doped electrode for application in high-performance lithium-sulfur battery

    Get PDF
    Bulk sulfur incorporating 3 wt% gold nano-powder is investigated as possible candidate to maximize the fraction of active material in the Li-S battery cathode. The material is prepared via simple mixing of gold with molten sulfur at 120 °C, quenching at room temperature, and grinding. Our comprehensive study reports relevant electrochemical data, advanced X-ray computed tomography (CT) imaging of the positive and negative electrodes, and a thorough structural and morphological characterization of the S:Au 97:3 w/w composite. This cathode exhibits high rate capability within the range from C/10 to 1C, a maximum capacity above 1300 mAh gS−1, and capacity retention between 85% and 91% after 100 cycles at 1C and C/3 rates. The novel formulation enables a sulfur fraction in the composite cathode film as high as 78 wt%, an active material loading of 5.7 mg cm−2, and an electrolyte/sulfur (E/S) ratio of 5 μL mg−1, which lead to a maximum areal capacity of 5.4 mAh cm−2. X-ray CT at the micro- and nanoscale reveals the microstructural features of the positive electrode that favor fast conversion kinetics in the battery. Quantitative analysis of sulfur distribution in the porous cathode displays that electrodeposition during the initial cycle may trigger an activation process in the cell leading to improved performance. Furthermore, the tomography study reveals the characteristics of the lithium anode and the cell separator upon a galvanostatic test prolonged over 300 cycles at a 2C rate

    A grain refinement mechanism of cast commercial purity aluminium by vanadium

    Get PDF
    Grain refinement of cast commercial purity aluminium by vanadium and the underlying mechanism have been investigated. Addition of 0.3 wt% and 0.4 wt% vanadium leads to columnar to equiaxed transition and the average grain sizes are refined to around 196 μm and 154 μm, respectively. Pro-peritectic equilibrium Al_{10}V particles are identified near the grain centres. These Al_{10}V particles have either octahedron or plate morphology with the bound planes belonging to {111} crystallographic planes. Three orientation relationships are also determined between the Al_{10}V particles and aluminium grains. Crystallographic analysis based on the experimental orientation relationships indicates that the Al_{10}V particles have relatively high nucleation potency for solid aluminium. Calculation of free growth undercooling based on the size distribution of the Al_{10}V particles reveals that the relatively large size of Al_{10}V particles facilitates the grain initiation of aluminium grains on these particles. Moreover, it is found that the level of vanadium added provides sufficient growth restriction effect in the aluminium melt as quantified by its growth restriction factor. All the three factors, i.e., sufficient potency of Al_{10}V particles, relatively large size of the Al_{10}V particles and adequate growth restriction effect by solute vanadium work in concert to achieve the grain refinement observed in Al-V alloys

    Investigating microstructural evolution during the electroreduction of UO2 to U in LiCl-KCl eutectic using focused ion beam tomography

    Get PDF
    Reprocessing of spent nuclear fuels using molten salt media is an attractive alternative to liquid-liquid extraction techniques. Pyroelectrochemical processing utilizes direct, selective, electrochemical reduction of uranium dioxide, followed by selective electroplating of a uranium metal. Thermodynamic prediction of the electrochemical reduction of UO2 to U in LiCl-KCl eutectic has shown to be a function of the oxide ion activity. The pO2− of the salt may be affected by the microstructure of the UO2 electrode. A uranium dioxide filled “micro-bucket” electrode has been partially electroreduced to uranium metal in molten lithium chloride-potassium chloride eutectic. This partial electroreduction resulted in two distinct microstructures: a dense UO2 and a porous U metal structure were characterised by energy dispersive X-ray spectroscopy. Focused ion beam tomography was performed on five regions of this electrode which revealed an overall porosity ranging from 17.36% at the outer edge to 3.91% towards the centre, commensurate with the expected extent of reaction in each location. The pore connectivity was also seen to reduce from 88.32% to 17.86% in the same regions and the tortuosity through the sample was modelled along the axis of propagation of the electroreduction, which was seen to increase from a value of 4.42 to a value of infinity (disconnected pores). These microstructural characteristics could impede the transport of O2− ions resulting in a change in the local pO2− which could result in the inability to perform the electroreduction

    Influence of Flow Field Design on Zinc Deposition and Performance in a Zinc-Iodide Flow Battery

    Get PDF
    Among the aqueous redox flow battery systems, redox chemistries using a zinc negative electrode have a relatively high energy density, but the potential of achieving high power density and long cycle life is hindered by dendrite growth at the anode. In this study, a new cell design with a narrow gap between electrode and membrane was applied in a zinc-iodide flow battery. In this design, some of the electrolyte flows over the electrode surface and a fraction of the flow passes through the porous felt electrode in the direction of current flow. The flow battery was tested under constant current density over 40 cycles, and the efficiency, discharge energy density, and power density of the battery were significantly improved compared to conventional flow field designs. The power density obtained in this study is one of the highest power densities reported for the zinc-iodide battery. The morphology of the zinc deposition was studied using scanning electron microscopy and optical profilometry. It was found that the flow through the electrode led to a thinner zinc deposit with lower roughness on the surface of the electrode, in comparison to the case where there was no flow through the electrode. In addition, inhibition of dendrite formation enabled operation at a higher range of current density. Ex situ tomographic measurements were used to image the zinc deposited on the surface and inside the porous felt. Volume rendering of graphite felt from X-ray computed tomography images showed that in the presence of flow through the electrode, more zinc deposition occurred inside the porous felt, resulting in a compact and thinner surface deposit, which may enable higher battery capacity and improved performance

    Examining the Cycling Behaviour of Li-Ion Batteries Using Ultrasonic Time-of-Flight Measurements

    Get PDF
    Diagnostic systems for Li-ion batteries have become increasingly important due to the larger size, and cost of the batteries being deployed in increasingly demanding applications, including electric vehicles. Here, ultrasound acoustic time-of-flight (ToF) analysis is conducted under a range of operating conditions. Measurements are performed on a commercial pouch cell during varying discharge rates to identify a range of effects that influence the acoustic ToF measurements. The cell was examined using X-ray computed tomography to ensure no significant defects were present and to confirm the layered structure in the region being investigated, validating the signal pattern observed. Analyses of the acoustic signals obtained suggest that stresses are generated in the electrodes during both the charge and discharge of the cell with the magnitude of Young's modulus for the component materials being both a function of the state-of-charge and applied current. Characteristic responses for both electrodes during the charge/discharge cycle highlight the potential application of the technique as a real-time diagnostic tool
    corecore