3 research outputs found

    Erythropoietin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy

    Get PDF
    Experimental studies targeting traumatic brain injury (TBI) have reported that erythropoietin (EPO) is an endogenous neuroprotectant in multiple models. In addition to its neuroprotective effects, it has also been shown to enhance reparative processes including angiogenesis and neurogenesis. Based on compelling pre-clinical data, EPO was tested by the Operation Brain Trauma Therapy (OBTT) consortium to evaluate therapeutic potential in multiple TBI models along with biomarker assessments. Based on the pre-clinical TBI literature, two doses of EPO (5000 and 10,000 IU/kg) were tested given at 15 min after moderate fluid percussion brain injury (FPI), controlled cortical impact (CCI), or penetrating ballistic-like brain injury (PBBI) with subsequent behavioral, histopathological, and biomarker outcome assessments. There was a significant benefit on beam walk with the 5000 IU dose in CCI, but no benefit on any other motor task across models in OBTT. Also, no benefit of EPO treatment across the three TBI models was noted using the Morris water maze to assess cognitive deficits. Lesion volume analysis showed no treatment effects after either FPI or CCI; however, with the 5000 IU/kg dose of EPO, a paradoxical increase in lesion volume and percent hemispheric tissue loss was seen after PBBI. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No treatment effects were seen on biomarker levels after FPI, whereas treatment at either dose exacerbated the increase in GFAP at 24 h in PBBI but attenuated 24-4 h delta UCH-L1 levels at high dose in CCI. Our data indicate a surprising lack of efficacy of EPO across three established TBI models in terms of behavioral, histopathological, and biomarker assessments. Although we cannot rule out the possibility that other doses or more prolonged treatment could show different effects, the lack of efficacy of EPO reduced enthusiasm for its further investigation in OBTT

    Synthesis of Findings, Current Investigations, and Future Directions: Operation Brain Trauma Therapy

    No full text
    Operation Brain Trauma Therapy (OBTT) is a fully operational, rigorous, and productive multicenter, pre-clinical drug and circulating biomarker screening consortium for the field of traumatic brain injury (TBI). In this article, we synthesize the findings from the first five therapies tested by OBTT and discuss both the current work that is ongoing and potential future directions. Based on the results generated from the first five therapies tested within the exacting approach used by OBTT, four (nicotinamide, erythropoietin, cyclosporine A, and simvastatin) performed below or well below what was expected based on the published literature. OBTT has identified, however, the early post-TBI administration of levetiracetam as a promising agent and has advanced it to a gyrencephalic large animal model--fluid percussion injury in micropigs. The sixth and seventh therapies have just completed testing (glibenclamide and Kollidon VA 64), and an eighth drug (AER 271) is in testing. Incorporation of circulating brain injury biomarker assessments into these pre-clinical studies suggests considerable potential for diagnostic and theranostic utility of glial fibrillary acidic protein in pre-clinical studies. Given the failures in clinical translation of therapies in TBI, rigorous multicenter, pre-clinical approaches to therapeutic screening such as OBTT may be important for the ultimate translation of therapies to the human condition
    corecore