33 research outputs found

    Protein-free parallel triple-stranded DNA complex formation

    No full text

    Parallel-stranded DNA with natural base sequences

    No full text
    Noncanonical parallel-stranded DNA double helices (ps-DNA) of natural nucleotide sequences are usually less stable than the canonical antiparallel-stranded DNA structures, which ensures reliable cell functioning. However, recent data indicate a possible role of ps-DNA in DNA loops or in regions of trinucleotide repeats connected with neurodegenerative diseases. The review surveys recent studies on the effect of nucleotide sequence on preference of one or other type of DNA duplex. (1) Ps-DNA of mixed AT/GC composition was found to have conformational and thermodynamic properties drastically different from those of a Watson-Crick double helix. Its stability depends strongly on the specific sequence in a manner peculiar to the ps double helix, because of the energy disadvantage of the AT/GC contacts. The AT/GC boundary facilitated flipping of A and T out of the ps double helix. Proton acceptor groups of bases are exposed into both grooves of the ps-DNA and are accessible to solvent and ligands, including proteins. (2) DNA regions containing natural minor bases isoguanine and isomethylisocytosine were shown to form ps-DNA with trans AT-, trans isoGC, and trans iso5meCG pairs exceeding in stability a related canonical duplex. (3) Nucleotide sequence dG(GT)4G from yeast telomeres and microsatellites was demonstrated to form novel ps-DNA with GG and TT base pairing. Unlike d(GT)n- and d(GnTm) sequences able to form quadruplexes, the dG(GT)4G sequence formed no alternative double- or multistranded structures in a wide range of experimental conditions, thus suggesting that the nucleotidcontext governs the observed structural polymorphism of the d(GT)n sequence. The possible biological role of ps-DNA and the prospects of its study are discussed

    The telomeric dG(GT)4G sequence can adopt a parallel-stranded double helical conformation

    Get PDF
    Oligonucleotides 3'-d(GTGTGTGTGG)-L-d(GGTGTGTGTG)-3' (hp-GT) and 3'-d(G44SG4STG4STG4STGG)-L-d(GGTGTGTGTG)-3' (hp-SGT), (L=(CH2CH2O)3), were shown by use of several optical techniques to form a novel parallel-stranded (ps) intramolecular double helix with purine-purine and pyrimidine-pyrimidine base pairing. The rotational relaxation time of hp-GT was similar to that of a 10-bp reference duplex, and the fraction of unpaired bases was determined to be ~7%, testifying to the formation of an intramolecular double helical hairpin by the sequence under the given experimental conditions. A quasi-two-state mode of ps-double helix formation was validated, yielding a helix-coil transition enthalpy of -135±5 kJ/mol. The G·G and T·T (or 4ST ·T) base pair configurations and conformational parameters of the double helix were derived with molecular modeling by force field techniques. Repetitive d(GT) sequences are abundant in telomers of different genomes and in the regulatory regions of genes. Thus, the observed conformational potential of the repetitive d(GT) sequence may be of importance in the regulation of cell processes

    FTIR and UV spectroscopy of parallel-stranded DNAs with mixed A·T/G·C sequences and their inosine analogs.

    No full text
    The infrared spectra of parallel-stranded (ps) hairpin duplexes with mixed AT/GC composition and either isolated or sequential G·C pairs were studied in comparison with antiparallel-stranded (aps) duplexes and a corresponding set of with molecules with inosine as a G base analog lacking the exocyclic amino group. The ps duplexes showed the characteristic bands for the C2=O2 and C4=O4 stretching vibrations of thymine residues in trans-Watson-Crick A·T pairing at 1683 cm-1 and 1668 cm-1. The latter band was superimposed on the stretching vibration of the free C6=O6 group of guanine. Substitution of guanines by inosines inhibited the formation of ps hairpin duplexes whatever the sequence, demonstrating that in the H-bonding between G and C the 2-NH2 group is necessary for stabilizing all of the investigated ps duplexes with mixed AT/GC composition. This result is in agreement with a model of trans-Watson-Crick G·C base pairs with 2 H-bonds [N2H2(G)-N3(C)) and (N1H(G)-O2(C)]. However, trans-Watson-Crick A·T and G·C base pairs with two H-bonds are not isomorphous, which may explain the decreased stability of the ps, but not the aps, duplexes upon increasing the number of AT/GC junctions. Molecular modelling studies performed on two of the ps duplexes reveal the existence of propeller twist for avoiding a clash between the N2(G) and N4(C) amino groups, and favorable stacking of sequential G·C base pairs. The optimized hairpin ps duplexes invariably incorporated G·C base pairs with two H- bonds, regardless of the initial structures adopted for the force field calculations

    Parallel-stranded DNA with mixed AT/GC composition: role of trans G·C base pairs in sequence dependent helical stability

    No full text
    Parallel-stranded (ps) DNAs with mixed AT/GC content comprising G.C pairs in a varying sequence context have been investigated. Oligonucleotides were devised consisting of two 10-nt strands complementary either in a parallel or in an antiparallel orientation and joined via nonnucleotide linkers so as to form 10-bp ps or aps hairpins. A predominance of intramolecular hairpins over intermolecular duplexes was achieved by choice of experimental conditions and verified by fluorescence determinations yielding estimations of rotational relaxation times and fractional base pairing. A multistate mode of ps hairpin melting was revealed by temperature gradient gel electrophoresis (TGGE). The thermal stability of the ps hairpins with mixed AT/GC content depends strongly on the specific sequence in a manner peculiar to the ps double helix. The thermodynamic effects of incorporating trans G.C base pairs into an AT sequence are context-dependent: an isolated G. C base pair destabilizes the duplex whereas a block of > or =2 consecutive G.C base pairs exerts a stabilizing effect. A multistate heterogeneous zipper model for the thermal denaturation of the hairpins was derived and used in a global minimization procedure to compute the thermodynamic parameters of the ps hairpins from experimental melting data. In 0.1 M LiCl at 3 degrees C, the formation of a trans G.C pair in a GG/CC sequence context is approximately 3 kJ mol(-)(1) more favorable than the formation of a trans A.T pair in an AT/TA sequence context. However, GC/AT contacts contribute a substantial unfavorable free energy difference of approximately 2 kJ mol(-)(1). As a consequence, the base composition and fractional distribution of isolated and clustered G.C base pairs determine the overall stability of ps-DNA with mixed AT/GC sequences. Thus, the stability of ps-DNA comprising successive > or =2 G.C base pairs is greater than that of ps-DNA with an alternating AT sequence, whereas increasing the number of AT/GC contacts by isolating G.C base pairs exerts a destabilizing effect on the ps duplex. Molecular modeling of the various helices by force field techniques provides insight into the structural basis for these distinctions

    Protein-free parallel triple-stranded DNA complex formation

    No full text
    A 14 nt DNA sequence 5′-AGAATGTGGCAAAG-3′ from the zinc finger repeat of the human KRAB zinc finger protein gene ZNF91 bearing the intercalator 2-methoxy,6-chloro,9-amino acridine (Acr) attached to the sugar–phosphate backbone in various positions has been shown to form a specific triple helix (triplex) with a 16 bp hairpin (intramolecular) or a two-stranded (intermolecular) duplex having the identical sequence in the same (parallel) orientation. Intramolecular targets with the identical sequence in the antiparallel orientation and a non-specific target sequence were tested as controls. Apparent binding constants for formation of the triplex were determined by quantitating electrophoretic band shifts. Binding of the single-stranded oligonucleotide probe sequence to the target led to an increase in the fluorescence anisotropy of acridine. The parallel orientation of the two identical sequence segments was confirmed by measurement of fluorescence resonance energy transfer between the acridine on the 5′-end of the probe strand as donor and BODIPY-Texas Red on the 3′-amino group of either strand of the target duplex as acceptor. There was full protection from OsO(4)-bipyridine modification of thymines in the probe strand of the triplex, in accordance with the presumed triplex formation, which excluded displacement of the homologous duplex strand by the probe–intercalator conjugate. The implications of these results for the existence of protein-independent parallel triplexes are discussed

    Parallel and antiparallel A*A-T intramolecular triple helices.

    No full text
    Intramolecular triple helices have been obtained by folding back twice oligonucleotides formed by decamers bound by non-nucleotide linkers: dA10-linker-dA10-linker-dT10 and dA10-linker-dT10-linker-dA10. We have thus prepared two triple helices with forced third strand orientation, respectively antiparallel (apA*A-T) and parallel (pA*A-T) with respect to the adenosine strand of the Watson-Crick duplex. The existence of the triple helices has been shown by FTIR, UV and fluorescence spectroscopies. Similar melting temperatures have been obtained in very different oligomer concentration conditions (micromolar solutions for thermal denaturation classically followed by UV spectroscopy, milimolar solutions in the case of melting monitored by FTIR spectroscopy) showing that the triple helices are intramolecular. The stability of the parallel triplex is found to be slightly lower than that of the antiparallel (deltaT(m) = 6 degrees C). The sugar conformations determined by FTIR are different for both triplexes. Only South-type sugars are found in the antiparallel triplex whereas both South- and North-type sugars are detected in the parallel triplex. In this case, thymidine sugars have a South-type geometry, and the adenosine strand of the Watson-Crick duplex has North-type sugars. For the antiparallel triplex the experimental results and molecular modeling data are consistent with a reverse-Hoogsteen like third-strand base pairing and South-type sugar conformation. An energetically optimized model of the parallel A*A-T triple helix with a non-uniform distribution of sugar conformations is discussed

    Parallel DNA double helices incorporating isoG or m⁵ isoC bases studied by FTIR, CD and molecular modeling

    No full text
    FTIR spectroscopy has been used to follow the formation of parallel stranded DNA duplexes incorporating isoG or m⁵isoC bases and determine their base pairing scheme. The results are discussed in comparison with data concerning anti-parallel duplexes with comparable base composition and sequence. In duplexes containing A–T and isoG–C or m⁵isoC–G base pairs shifts of the thymine C2=O2 and C4=O4 carbonyl stretching vibrations (to lower and higher wavenumbers, respectively, when compared to their positions in classical cis Watson–Crick (WC) base pairs) reflect the formation of transWatson–Crick A–T base pairs. All carbonyl groups of cytosines, m⁵isocytosines, guanines and isoguanines are found to be involved in hydrogen bonds, indicative of the formation of isoG–C and m⁵isoC–G base pairs with three hydrogen bonds. Molecular modeling shows that both structures form regular right handed helices with C2'endo sugar puckers. The role of the water content on the helical conformation of the parallel duplexes has been studied by FTIR and CD. It is found that a conformational transition similar to the B->A transition observed for anti-parallel duplexes induced by a decrease of the water content of the samples can occur for these parallel duplexes. Their helical flexibility has been evidenced by FTIR studies on hydrated films by the emergence of absorption bands characteristic of A type geometry, in particular by an S-type->N-type repuckering of the deoxyribose. All sugars in the parallel duplex with alternating d(isoG–A)/d(C–T) sequence can adopt an N-type geometry in low water content conditions. The conformational transition of the parallel hairpin duplex with alternating d(isoG-A)/d(C-T) sequence was followed by circular dichroism in water / trifluoroethanol solutions and its free energy at 0°C was estimated to be 6.6±0.3 kcal mol ⁻¹

    Fluorescent 2-pyrimidinone nucleoside in parallel-stranded DNA

    No full text
    Stretches of parallel-stranded (ps) double-helical DNA can arise within antiparallel-stranded (aps) Watson-Crick DNA in looped structures or in the presence of sequence mismatches. Here we studied an effect of a pyrimidinone-G (PG) base pair on the stability and conformation of the ps DNA to explore whether P is useful as a structural probe

    Distamycin-stabilized antiparallel-parallel-combination (APC) DNA

    No full text
    The formation of Antiparallel-Parallel-Combination (APC) DNA, a liner duplex with a segment of parallel-stranded (ps) helix flanked by conventional B-DNA, was tested with a number of synthetic oligonucleotides. The groove-binding ligand distamycin A (DstA) was used to stabilize the ps segment comprising five AT base pairs. Two drug molecules bound per APC, one in each of the two equivalent grooves characteristic of ps-DNA. APC-DNA, reference molecules and their complexes with DstA were analysed by several methods: circular dichroism and absorption spectroscopy, thermal denaturation, chemical modification, and molecular modeling. The dye binding stoichiometry differed significantly due to inherent structural differences in the groove geometries of ps-DNA (trans base pairs, similar grooves) and conventional antiparallel-stranded (aps) B-DNA (cis base pairs, distinct major and minor grooves). The data support the existence of APC folding in solution
    corecore