9 research outputs found

    Π’Ρ‹Π±ΠΎΡ€ схСмы программирования мСмристорных элСмСнтов

    Get PDF
    Introduction. An array of memristive elements can be used in prospective neural computing systems as a programmable resistance (analog multiplication factor) when performing operations of analog vector multiplication, discrete in time. To form the required resistance, the memristor should be subjected to a programming procedure. This article discusses conventional programming schemes and proposes a new versatile programming scheme for memristor elements.Aim. To identify or develop an optimal programming scheme for memristors by analyzing the advantages and disadvantages of existing methods.Materials and methods. The programming procedure can be carried out using either SET or RESET, depending on a different direction of movement according to the volt-ampere characteristic of the memory and its transfer to a particular state. The programming process is controlled in the LTspice circuit modeling program.Results. Typical programming schemes of memristors were analyzed; advantages and disadvantages of existing methods were revealed. A new versatile circuit based on a variable resistor was proposed. The circuit was simulated both under a fixed resistance of the variable resistor and when varying the memristor resistance values within their permissible range.Conclusion. In comparison with the RESET mode, the SET programming mode provides for a greater linearity of variations in the memristor resistance. The use of a circuit based on a variable resistor and a bipolar voltage source allows programming of any type and eliminates the need for recommutation of the memristor. The simulation results confirm the feasibility of the proposed method. The proposed circuit can be complemented not only with a comparator, but also with an ADC. This will provide the possibility of selecting various means for measuring the memristor resistance both during programming and for the purpose of monitoring the memristor resistance at the end of the procedure.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Массив мСмристивных элСмСнтов ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован Π² пСрспСктивных систСмах нСйровычислСний Π² качСствС ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ сопротивлСния (Π°Π½Π°Π»ΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ коэффициСнта умноТСния) ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ Π°Π½Π°Π»ΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ умноТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² дискрСтного ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Для формирования Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠ³ΠΎ сопротивлСния мСмристор Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π½ΡƒΡ‚ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π΅ "программирования". Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Ρ‚ΠΈΠΏΠΎΠ²Ρ‹Π΅ схСмы программирования ΠΈ прСдлагаСтся новая схСма ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ устройства программирования мСмристора.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π’Ρ‹ΡΠ²ΠΈΡ‚ΡŒ ΠΈΠ»ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ схСму программирования мСмристоров, анализируя прСимущСства ΠΈ нСдостатки ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… способов.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° программирования ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ осущСствлСна двумя способами – SET ΠΈ RESET, связанными с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ двиТСния ΠΏΠΎ Π²ΠΎΠ»ΡŒΡ‚-Π°ΠΌΠΏΠ΅Ρ€Π½ΠΎΠΉ характСристикС мСмристора ΠΈ Π΅Π³ΠΎ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ΠΎΠΌ Π² Ρ‚ΠΎ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠ΅ состояниС. ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ процСсса программирования осущСствляСтся Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ схСмотСхничСского модСлирования LTspice.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Ρ‚ΠΈΠΏΠΎΠ²Ρ‹Π΅ схСмы программирования мСмристора, выявлСны прСимущСства ΠΈ нСдостатки ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… способов. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° новая ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Π°Ρ схСма с использованиСм ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ рСзистора. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ схСмотСхничСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΈ фиксированном Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ сопротивлСния ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ рСзистора ΠΈ ΠΏΡ€ΠΈ Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ Ρ€Π°Π·Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ сопротивлСния Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… допустимых Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ сопротивлСний мСмристора.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π Π΅ΠΆΠΈΠΌ программирования SET позволяСт Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ большСй линСйности измСнСния сопротивлСния мСмристора ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ€Π΅ΠΆΠΈΠΌΠΎΠΌ RESET. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ схСмы с использованиСм ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ рСзистора ΠΈ двухполярного источника напряТСния позволяСт ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ любого Ρ‚ΠΈΠΏΠ° ΠΈ ΠΈΡΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ мСмристора. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ модСлирования ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ Ρ€Π°Π±ΠΎΡ‚ΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ способа. Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊ Π½Π°Π»ΠΈΡ‡ΠΈΡŽ ΠΊΠΎΠΌΠΏΠ°Ρ€Π°Ρ‚ΠΎΡ€Π° Π² схСму ΠΌΠΎΠΆΠ½ΠΎ ввСсти ΠΈ АЦП для возмоТности Π²Ρ‹Π±ΠΎΡ€Π° срСдства измСрСния сопротивлСния мСмристора ΠΊΠ°ΠΊ Π² процСссС провСдСния программирования, Ρ‚Π°ΠΊ ΠΈ для Ρ†Π΅Π»Π΅ΠΉ контроля сопротивлСния мСмристора ΠΏΠΎ ΠΎΠΊΠΎΠ½Ρ‡Π°Π½ΠΈΠΈ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹

    Effect of pulse amplitude on depression and potentiation of ZrO2(Y)-based memristive synaptic device

    No full text
    The effect of the amplitude of depressing and potentiating pulses on the synaptic plasticity (potentiation and depression) of a memristive device based on the Ta/ZrO2(Y)/Pt stack has been experimentally studied. It is shown that the amplitude of depressing and potentiating pulses affects the synaptic plasticity, namely, the value of current passing through the memristive device. The presented results demonstrate the prospects of using the ZrO2(Y)-based memristive devices as stable and low-power elements of neuromorphic systems

    Neurohybrid memristive cmos-integrated systems for biosensors and neuroprosthetics

    No full text
    Β© 2020 Mikhaylov, Pimashkin, Pigareva, Gerasimova, Gryaznov, Shchanikov, Zuev, Talanov, Lavrov, Demin, Erokhin, Lobov, Mukhina, Kazantsev, Wu and Spagnolo. Here we provide a perspective concept of neurohybrid memristive chip based on the combination of living neural networks cultivated in microfluidic/microelectrode system, metal-oxide memristive devices or arrays integrated with mixed-signal CMOS layer to control the analog memristive circuits, process the decoded information, and arrange a feedback stimulation of biological culture as parts of a bidirectional neurointerface. Our main focus is on the state-of-the-art approaches for cultivation and spatial ordering of the network of dissociated hippocampal neuron cells, fabrication of a large-scale cross-bar array of memristive devices tailored using device engineering, resistive state programming, or non-linear dynamics, as well as hardware implementation of spiking neural networks (SNNs) based on the arrays of memristive devices and integrated CMOS electronics. The concept represents an example of a brain-on-chip system belonging to a more general class of memristive neurohybrid systems for a newgeneration robotics, artificial intelligence, and personalized medicine, discussed in the framework of the proposed roadmap for the next decade period

    Silicon-Compatible Memristive Devices Tailored by Laser and Thermal Treatments

    No full text
    Nowadays, memristors are of considerable interest to researchers and engineers due to the promise they hold for the creation of power-efficient memristor-based information or computing systems. In particular, this refers to memristive devices based on the resistive switching phenomenon, which in most cases are fabricated in the form of metal–insulator–metal structures. At the same time, the demand for compatibility with the standard fabrication process of complementary metal–oxide semiconductors makes it relevant from a practical point of view to fabricate memristive devices directly on a silicon or SOI (silicon on insulator) substrate. Here we have investigated the electrical characteristics and resistive switching of SiOx- and SiNx-based memristors fabricated on SOI substrates and subjected to additional laser treatment and thermal treatment. The investigated memristors do not require electroforming and demonstrate a synaptic type of resistive switching. It is found that the parameters of resistive switching of SiOx- and SiNx-based memristors on SOI substrates are remarkably improved. In particular, the laser treatment gives rise to a significant increase in the hysteresis loop in I–V curves of SiNx-based memristors. Moreover, for SiOx-based memristors, the thermal treatment used after the laser treatment produces a notable decrease in the resistive switching voltage

    Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network

    No full text
    We investigate the constructive role of an external noise signal, in the form of a low-rate Poisson sequence of pulses supplied to all inputs of a spiking neural network, consisting in maintaining for a long time or even recovering a memory trace (engram) of the image without its direct renewal (or rewriting). In particular, this unique dynamic property is demonstrated in a single-layer spiking neural network consisting of simple integrate-and-fire neurons and memristive synaptic weights. This is carried out by preserving and even fine-tuning the conductance values of memristors in terms of dynamic plasticity, specifically spike-timing-dependent plasticity-type, driven by overlapping pre- and postsynaptic voltage spikes. It has been shown that the weights can be to a certain extent unreliable, due to such characteristics as the limited retention time of resistive state or the variation of switching voltages. Such a noise-assisted persistence of memory, on one hand, could be a prototypical mechanism in a biological nervous system and, on the other hand, brings one step closer to the possibility of building reliable spiking neural networks composed of unreliable analog elements
    corecore