18 research outputs found

    The spread of Conservation Agriculture: policy and institutional support for adoption and uptake

    Get PDF
    Conservation Agriculture (CA) in its many local adaptations has been practiced for more than three decades. In year 2013 it was deployed on some 155 million hectares worldwide on both large and small farms. In most cases, it has led to yield, economic and environmental benefits, and thus would appear to deserve greater policy and institutional support to accelerate opportunities for adoption and uptake. CA represents an alternate approach to the sustainable intensification of agriculture and differs fundamentally from modern approaches based largely on intensive tillage and purchased inputs that often disrupt ecosystem functions. CA incorporates a number of apparently counterintuitive and often unrecognised elements that simultaneously promote soil health, productive capacity and ecosystem services. Important constraints appear to be preventing wider-scale adoption of CA. Experience across many countries has shown that the adoption and spread of CA requires a change in commitment and behaviour of all stakeholders. For farmers, social mechanisms that encourage experimentation, learning and adaptation to local conditions are a prerequisite. For policy-makers and institutional leaders, transformation of tillage to CA systems requires that they fully understand the large economic, social and environmental benefits that these systems offer. Such transformations call for sustained policy and institutional support that provides both incentives and ‘motivations’ to encourage farmers to adopt components of CA practices and improve them over time. Here, we summarise the key institutional and policy requirements. Many of these apply widely to other forms of more sustainable agriculture.Dans ses nombreuses adaptations locales, l’Agriculture de Conservation (AC) est pratiquée depuis plus de trois décennies. En 2011, elle était déployée dans des fermes de toutes tailles et de tous horizons couvrant une surface totale de quelque 125 millions d’hectares. Dans la plupart des cas, elle s’est traduite par des avantages économiques et environnementaux, et il apparaît donc qu’un soutien politique et institutionnel de plus grande ampleur se justifierait pour accélérer son adoption et son implémentation. L’AC constitue une approche vers l’intensification durable de l’agriculture qui se démarque radicalement des approches modernes basées en grande part sur un travail intensif des sols et sur l’achat d’intrants qui perturbent souvent les fonctions de l’écosystème. L’AC intègre un certain nombre de composantes apparemment contre-intuitives – et souvent non reconnues – qui  ont un effet favorable à la fois sur la santé des sols, la capacité de production et les écoservices. De sérieux obstacles semblent venir entraver une adoption à plus grande échelle de l’AC. L’expérience acquise dans bon nombre de pays a fait ressortir que l’adoption et l’extension de l’AC nécessitaient une remise en question quant à l’engagement et au comportement de toutes les parties prenantes. Pour les fermiers, des mécanismes sociaux propres à encourager l’expérimentation, l’apprentissage et l’adaptation aux conditions locales s’imposent en tant que préalables. Pour les décideurs et les leaders institutionnels, le passage du travail des sols classique aux systèmes AC exige qu’ils comprennent pleinement les grands avantages économiques, sociaux et environnementaux qu’offrent ces systèmes. De telles évolutions ne passeront que par un soutien politique et institutionnel porteur à la fois de motivations et d’ « incitations » encourageant les fermiers à adopter les divers aspects des pratiques AC et à les améliorer au fil du temps. Nous proposons ici une synthèse des impératifs majeurs sur les plans politique et institutionnel – sachant qu’un grand nombre de ces impératifs sont largement applicables à d’autres formes d’agriculture plus durable.La Agricultura de conservación (AC), en sus distintas versiones locales, lleva practicándose desde hace más de 3 décadas. En el año 2011, se practicó en más de 125 millones de hectáreas en todo el mundo, en explotaciones tanto grandes como pequeñas. En muchos casos, ha producido beneficios económicos y medioambientales y, por tanto, merece un mayor apoyo político e institucional a fin de acelerar las oportunidades para su adopción y práctica. La AC representa un enfoque alternativo a una intensificación sostenible de la agricultura y difiere, en sus fundamentos, de los enfoques modernos, basados principalmente en unos cultivos intensivos y en la compra de insumos que suelen alterar el ecosistema. La AC incorpora una serie de elementos, en apariencia contrarios a la intuición y que no gozan de reconocimiento, pero que favorecen tanto la salud de los suelos, como la capacidad productiva y los servicios ecosistémicos. Parece ser que existen limitaciones importantes que están evitando la adopción a una mayor escala de la AC. La experiencia en muchos países ha demostrado que la adopción y la expansión de la AC requiere un cambio en el compromiso y el comportamiento de todas las partes interesadas. Para los agricultores, los mecanismos sociales que favorecen la experimentación, el aprendizaje y la adaptación a condiciones locales son un requisito previo. Para líderes institucionales y legisladores, la transformación del cultivo intensivo en sistemas de AC requiere que comprendan las grandes ventajas económicas, sociales y medioambientales que estos sistemas ofrecen. Dichas transformaciones requieren un apoyo institucional y político constante que ofrezca tanto incentivos como «motivaciones» para animar a los agricultores a adoptar prácticas de la AC y a perfeccionarlas con el tiempo. Aquí, resumimos los requisitos políticos e institucionales clave. Muchos de ellos se aplican de manera generalizada a otras formas de agricultura sostenible

    The spread of Conservation Agriculture: policy and institutional support for adoption and uptake

    Get PDF
    Conservation Agriculture (CA) in its many local adaptations has been practiced for more than three decades. In year 2013 it was deployed on some 155 million hectares worldwide on both large and small farms. In most cases, it has led to yield, economic and environmental benefits, and thus would appear to deserve greater policy and institutional support to accelerate opportunities for adoption and uptake. CA represents an alternate approach to the sustainable intensification of agriculture and differs fundamentally from modern approaches based largely on intensive tillage and purchased inputs that often disrupt ecosystem functions. CA incorporates a number of apparently counterintuitive and often unrecognised elements that simultaneously promote soil health, productive capacity and ecosystem services. Important constraints appear to be preventing wider-scale adoption of CA. Experience across many countries has shown that the adoption and spread of CA requires a change in commitment and behaviour of all stakeholders. For farmers, social mechanisms that encourage experimentation, learning and adaptation to local conditions are a prerequisite. For policy-makers and institutional leaders, transformation of tillage to CA systems requires that they fully understand the large economic, social and environmental benefits that these systems offer. Such transformations call for sustained policy and institutional support that provides both incentives and ‘motivations’ to encourage farmers to adopt components of CA practices and improve them over time. Here, we summarise the key institutional and policy requirements. Many of these apply widely to other forms of more sustainable agriculture.Dans ses nombreuses adaptations locales, l’Agriculture de Conservation (AC) est pratiquée depuis plus de trois décennies. En 2011, elle était déployée dans des fermes de toutes tailles et de tous horizons couvrant une surface totale de quelque 125 millions d’hectares. Dans la plupart des cas, elle s’est traduite par des avantages économiques et environnementaux, et il apparaît donc qu’un soutien politique et institutionnel de plus grande ampleur se justifierait pour accélérer son adoption et son implémentation. L’AC constitue une approche vers l’intensification durable de l’agriculture qui se démarque radicalement des approches modernes basées en grande part sur un travail intensif des sols et sur l’achat d’intrants qui perturbent souvent les fonctions de l’écosystème. L’AC intègre un certain nombre de composantes apparemment contre-intuitives – et souvent non reconnues – qui  ont un effet favorable à la fois sur la santé des sols, la capacité de production et les écoservices. De sérieux obstacles semblent venir entraver une adoption à plus grande échelle de l’AC. L’expérience acquise dans bon nombre de pays a fait ressortir que l’adoption et l’extension de l’AC nécessitaient une remise en question quant à l’engagement et au comportement de toutes les parties prenantes. Pour les fermiers, des mécanismes sociaux propres à encourager l’expérimentation, l’apprentissage et l’adaptation aux conditions locales s’imposent en tant que préalables. Pour les décideurs et les leaders institutionnels, le passage du travail des sols classique aux systèmes AC exige qu’ils comprennent pleinement les grands avantages économiques, sociaux et environnementaux qu’offrent ces systèmes. De telles évolutions ne passeront que par un soutien politique et institutionnel porteur à la fois de motivations et d’ « incitations » encourageant les fermiers à adopter les divers aspects des pratiques AC et à les améliorer au fil du temps. Nous proposons ici une synthèse des impératifs majeurs sur les plans politique et institutionnel – sachant qu’un grand nombre de ces impératifs sont largement applicables à d’autres formes d’agriculture plus durable.La Agricultura de conservación (AC), en sus distintas versiones locales, lleva practicándose desde hace más de 3 décadas. En el año 2011, se practicó en más de 125 millones de hectáreas en todo el mundo, en explotaciones tanto grandes como pequeñas. En muchos casos, ha producido beneficios económicos y medioambientales y, por tanto, merece un mayor apoyo político e institucional a fin de acelerar las oportunidades para su adopción y práctica. La AC representa un enfoque alternativo a una intensificación sostenible de la agricultura y difiere, en sus fundamentos, de los enfoques modernos, basados principalmente en unos cultivos intensivos y en la compra de insumos que suelen alterar el ecosistema. La AC incorpora una serie de elementos, en apariencia contrarios a la intuición y que no gozan de reconocimiento, pero que favorecen tanto la salud de los suelos, como la capacidad productiva y los servicios ecosistémicos. Parece ser que existen limitaciones importantes que están evitando la adopción a una mayor escala de la AC. La experiencia en muchos países ha demostrado que la adopción y la expansión de la AC requiere un cambio en el compromiso y el comportamiento de todas las partes interesadas. Para los agricultores, los mecanismos sociales que favorecen la experimentación, el aprendizaje y la adaptación a condiciones locales son un requisito previo. Para líderes institucionales y legisladores, la transformación del cultivo intensivo en sistemas de AC requiere que comprendan las grandes ventajas económicas, sociales y medioambientales que estos sistemas ofrecen. Dichas transformaciones requieren un apoyo institucional y político constante que ofrezca tanto incentivos como «motivaciones» para animar a los agricultores a adoptar prácticas de la AC y a perfeccionarlas con el tiempo. Aquí, resumimos los requisitos políticos e institucionales clave. Muchos de ellos se aplican de manera generalizada a otras formas de agricultura sostenible

    Re-thinking the conservation of carbon, water and soil: a different perspective

    No full text
    Sustaining soil productivity requires continuing actions of soil organisms on organic materials for optimizing of soil porosity and of movements of roots, water and gases in the root-zone. Soil is more quickly formed and self-renewed from the top downwards than only by slow additions from the bottom upwards. Loss of porosity diminishes soil’s infiltration capacity and water-holding potential. Factors that provide insufficient organic substrates for soil organisms and that unduly accelerate oxidation of soil organic matter hinder the self-recuperation of soil and facilitate ‘Stage-1’ loss of carbon from within soil aggregates. They predispose the soil to lose rapidly even more carbon, in particulate form, through ‘Stage-2’ losses during consequent processes of runoff and erosion. Forms of land use and management are advocated that favor the functioning of soil-inhabiting organisms, including plants, such that carbon’s capture in photosynthesis is increased, its usefulness in the soil as a rooting medium is prolonged, and its subsequent immobilization in the process of sequestration ameliorates the rate of increase in carbon dioxide concentration in the global atmosphere

    Chapitre 4. Une perspective écologique sur la restauration des sols dégradés

    No full text
    La restauration des sols dégradés peut viser trois objectifs : reconstruire le potentiel de production de l’eau et des sols, améliorer leur résilience face aux risques futurs et augmenter leur durabilité. D’un point de vue écologique, les sols sont des entités vivantes dont les composantes sont en relation avec les principaux facteurs de la productivité des sols. De là on peut développer différentes approches pour déterminer les causes de leur dégradation actuelle, décider quel processus améliorant doit être mis en route et comment gérer ces processus de telle façon qu’on atteigne les objectifs. Cette approche nous conduit au développement de la gestion durable de l’eau et de la fertilité des sols (GCES ou Better land husbandry).The objectives of restoring damaged rural soils are: to re-build their potentials for yielding plants and water, to increase their resilience in the face of future hazards and to raise their capacity for self-sustainability. From an ecological viewpoint, soils may be considered as living entities, of which the four key interacting components of soil/plant ecosystems are sketched, together with the main requirements for soil to function effectively as a productive medium. From these can be developed suitable approaches to determine the causes of the present damage, to decide what remedial processes need to be initiated, and how these should be managed most appropriately to reach the stated objectives. Taking such an approach leads to better land husbandry

    Land husbandry: an agro-ecological approach to land use and management Part 1: Considerations of landscape conditions

    Get PDF
    In this, the first of two papers, the roles of key features of any landscape in determining potentials for erosional losses of soil and water are considered from an agro-ecological viewpoint. In this light, the effectiveness of past commonly-accepted approaches to soil and water conservation are often found to have been inadequate. In many cases they have tackled symptoms of land degradation without appreciating fully the background causes, which often relate to inadequate matching of land-use/land-management with features of the landscape. A number of reasons for this mismatch are suggested. Understanding the ecological background to land husbandry (as defined below) will improve the effectiveness of attempts to tackle land degradation. In particular, an ecologically based approach to better land husbandry helps to foresee potential problems in some detail, so that appropriate forward planning can be undertaken to avoid them. This paper describes some practical ways of undertaking an appropriate survey of significant landscape features, enabling the definition and mapping of discrete areas of different land-use incapability classes. This is accompanied by an example of how the outcome was interpreted and used to guide the selection of appropriate areas which were apparently suitable for growing flue-cured tobacco within an area of ca. 140 km2 in Malawi. This process relied on knowledge and experience in various disciplines (interpretation of air-photos, topographic survey, soil survey, vegetation analysis, hydrology, soil & water conservation, geology, agronomy) so as to ensure that the mapping process was based on the principles of better land husbandry

    The spread of Conservation Agriculture: justification, sustainability and uptake

    No full text
    Conservation Agriculture (CA) has been practised for three decades and has spread widely. We estimate that there are now some 106 million ha of arable and permanent crops grown without tillage in CA systems, corresponding to an annual rate of increase globally since 1990 of 5.3 million ha. Wherever CA has been adopted it appears to have had both agricultural and environmental benefits. Yet CA represents a fundamental change in production system thinking. It has counterintuitive and often unrecognized elements that promote soil health, productive capacity and ecosystem services. The practice of CA thus requires a deeper understanding of its ecological underpinnings in order to manage its various elements for sustainable intensification, where the aim is to optimize resource use and protect or enhance ecosystem processes in space and time over the long term. For these reasons CA is knowledge-intensive. CA constitutes principles and practices that can make a major contribution to sustainable production intensification. This, the first of two papers, presents the justification for CA as a system capable of building sustainability into agricultural production systems. It discusses some of CA's major achievable benefits, and presents an overview of the uptake of CA worldwide to 2009. The related paper elaborates the necessary conditions for the spread of CA. © 2009 Earthscan

    Sustainable Soil Management Is More Than What and How Crops are Grown

    No full text
    Soil management in agricultural landscapes should deploy production practices that are in harmony with soil-mediated ecosystem functions if they are to deliver a broad range of ecosystem services. Such services include edible and nonedible biological products, clean drinking water, processes that decompose and transform organic matter, and cleansing processes that maintain air quality. Several categories of ecosystem services are recognized: provisioning, regulating, cultural, and supporting (Millennium Ecosystem Assessment [MEA] 2005). In agricultural landscapes, provisioning ecosystem services can be delivered effectively and efficiently when the linked regulatory and supporting services are allowed to operate normally. Ecosystem functions that protect and enhance regulatory and supporting ecosystem services in the soil and landscape in which crops are grown appear, in general, to offer an effective way of harnessing the best productivity, ecological, and economic performances. Thus, agricultural soil management can only be considered sustainable if field soil health and productive capacity are kept at an optimum to provide ecosystem services such as provision of clean water, hydrologic and nutrient cycling, habitats for microorganisms and mesofauna, carbon sequestration, and climate regulation. Across agricultural and mixed land use landscapes, such ecosystem services form the necessary conditions for society to be able to sustainably harness the biological potentials of the altered agroecosystems and the associated provisioning services of food, vegetation, water, etc. In general, over the past several millennia, agricultural land use globally has led to soil physical, chemical, biological, and hydrological degradation, and this state of affairs continues unabated in most farmlands (MEA 2005; Montgomery 2007; FAO 2011a). This is true on small and large farms, on farms using mechanized or manual farm power, in developing and in industrialized countries, in the tropics, and outside the tropics. The dominant farming systems paradigm globally is based on mechani- cal tillage of various types to control weeds (often along with herbicides), soften the seedbed for crop establishment, and loosen compacted subsoil. At the center of this paradigm, there are farming practices for crop, soil, nutrient, water, and pest management that are considered by most agricultural stakeholders to be “modern, good, and normal.” However, the same farming practices have also forced farmers to accept that, supposedly, any accompanying soil degradation and loss of ecosystem services are inevitable and “natural” consequences of farming—consequences that can be kept under control but not avoided altogether. This view is increasingly being challenged and considered to be outdated, and inherited farming practices are considered unable to deliver the multifunctional objectives of productivity with ecosystem services now being demanded from agricultural land and producers who use it for farming. In the past three decades, ideas and concepts, as well as an ecosystem approach to sustainable production intensification, have led to the emergence of an alternative approach to farming across all continents. The title of this chapter is “Sustainable Soil Management Is More Than What and How Crops Are Grown.” Not only how and what crops are grown matters but also the interactions of the two in space and time lead to effects and consequences that influence system performance and delivery of ecosystem services. Some ecosystem services involve processes such as hydrological, carbon, and nutrient cycling that operate at the level of the fields on farms, landscapes, watersheds, and beyond. In addition, agricultural soil management is undertaken within different farming systems for the purpose of producing biological products for markets, and a range of production inputs, equipment and machinery, and management skills are needed to operate successfully. Thus, the topic of sustainable soil management has a wide and complex scope as reflected in the list of 10 tenets proposed by Lal (2009). This chapter is about soil degradation in agricultural land, its root causes, and what solutions are being implemented in different parts of the world to integrate sustainable soil management into sustainable farming and landscape management. Section 14.2 describes what is meant by agricultural soil degradation and its extent. Section 14.3 provides an explanation of some of the major causes of soil degradation in agricultural land use and illustrates three cases of widespread soil degradation in contrasting environments. This is followed, in Section 14.4, by a discussion on the elements of sustainable soil management. Section 14.5 provides an elaboration of sustainable soil management based on the agroecological paradigm that is increasingly being promoted internation- ally, including how sustainable soil management has been able to restore degraded soils in different agricultural environments. Section 14.6 illustrates the kind of contributions crop management, intercropping, crop–livestock integration, and farm power that can make to sustainable soil management objective. Section 14.7 presents three examples of large-scale landscape level ecosystem service benefits that are being harnessed from sustainable soil management systems. This is followed by Section 14.8 on policy and institutional implications for sustainable soil management. Section 14.9 offers some concluding remarks regarding the current trend toward sustainable soil management and what policy makers can do to support the trend
    corecore