217 research outputs found

    Generative Compression

    Full text link
    Traditional image and video compression algorithms rely on hand-crafted encoder/decoder pairs (codecs) that lack adaptability and are agnostic to the data being compressed. Here we describe the concept of generative compression, the compression of data using generative models, and suggest that it is a direction worth pursuing to produce more accurate and visually pleasing reconstructions at much deeper compression levels for both image and video data. We also demonstrate that generative compression is orders-of-magnitude more resilient to bit error rates (e.g. from noisy wireless channels) than traditional variable-length coding schemes

    Lock cohorting: A general technique for designing NUMA locks

    Get PDF
    Multicore machines are quickly shifting to NUMA and CC-NUMA architectures, making scalable NUMA-aware locking algorithms, ones that take into account the machines' non-uniform memory and caching hierarchy, ever more important. This paper presents lock cohorting, a general new technique for designing NUMA-aware locks that is as simple as it is powerful. Lock cohorting allows one to transform any spin-lock algorithm, with minimal non-intrusive changes, into scalable NUMA-aware spin-locks. Our new cohorting technique allows us to easily create NUMA-aware versions of the TATAS-Backoff, CLH, MCS, and ticket locks, to name a few. Moreover, it allows us to derive a CLH-based cohort abortable lock, the first NUMA-aware queue lock to support abortability. We empirically compared the performance of cohort locks with prior NUMA-aware and classic NUMA-oblivious locks on a synthetic micro-benchmark, a real world key-value store application memcached, as well as the libc memory allocator. Our results demonstrate that cohort locks perform as well or better than known locks when the load is low and significantly out-perform them as the load increases

    Correctness of an STM Haskell implementation

    Get PDF
    A concurrent implementation of software transactional memory in Concurrent Haskell using a call-by-need functional language with processes and futures is given. The description of the small-step operational semantics is precise and explicit, and employs an early abort of conflicting transactions. A proof of correctness of the implementation is given for a contextual semantics with may- and should-convergence. This implies that our implementation is a correct evaluator for an abstract specification equipped with a big-step semantics

    Genome‐wide linkage analysis and whole‐exome sequencing identifies an ITGA2B mutation in a family with thrombocytopenia

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150531/1/bjh15961_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150531/2/bjh15961.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150531/3/bjh15961-sup-0001-DataS1.pd
    • 

    corecore