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Abstract
Multicore machines are quickly shifting to NUMA and CC-NUMA
architectures, making scalable NUMA-aware locking algorithms,
ones that take into account the machines’ non-uniform memory and
caching hierarchy, ever more important. This paper presentslock
cohorting, a general new technique for designing NUMA-aware
locks that is as simple as it is powerful.

Lock cohorting allows one to transform any spin-lock algo-
rithm, with minimal non-intrusive changes, into scalable NUMA-
aware spin-locks. Our new cohorting technique allows us to easily
create NUMA-aware versions of the TATAS-Backoff, CLH, MCS,
and ticket locks, to name a few. Moreover, it allows us to derive
a CLH-based cohort abortable lock, the first NUMA-aware queue
lock to support abortability.

We empirically compared the performance of cohort locks with
prior NUMA-aware and classic NUMA-oblivious locks on a syn-
thetic micro-benchmark, a real world key-value store application
memcached, as well as thelibc memory allocator. Our results
demonstrate that cohort locks perform as well or better than known
locks when the load is low and significantly out-perform them as
the load increases.
Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming
General Terms Algorithms, Design, Performance
Keywords NUMA, hierarchical locks, spin locks

1. Introduction
In coming years, as multicore machines grow in size, one can ex-
pect an accelerated shift towards distributed non-uniform memory-
access (NUMA) and cache-coherent NUMA (CC-NUMA) archi-
tectures.1 Such architectures, examples of which include Intel’s
multi-socket Nehalem-based systems and Oracle’s 4-socket 256-
way Niagara-based systems, consist of collections of computing
cores with fast local memory (e.g. caches shared by cores on a sin-
gle multicore chip), communicating with each other via a slower
inter-chip communication medium. Access by a core to the local
memory, and in particular to a shared local cache, can be several
times faster than access to the remote memory or cache lines resi-
dent on another chip [12].

1 We use the term NUMA broadly, noting that it includes Non-Uniform
Communication Architecture (NUCA) machines as well.
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Dice [5], and Radovíc and Hagersten [12] were the first to iden-
tify the benefits of designing locks that improve locality of ref-
erence on CC-NUMA architectures by developing NUMA-aware
locks: general-purpose mutual-exclusion locks that encourage thr-
eads with high mutual cache locality to acquire the lock consecu-
tively, thus reducing the overall level of cache coherence misses
when executing instructions in the critical section. Specifically,
these designs attempt to minimizelock migration. We say a lock
L migratesif two threads running on a different NUMA clusters
(nodes) acquireL one after the other.

Radovíc and Hagersten introduced thehierarchical backoff lock
(HBO): a test-and-test-and-setlock augmented with a newbackoff
schemeto reduce cross-interconnect contention on the lock vari-
able. Their hierarchical backoff mechanism allows the backoff de-
lay to be tuned dynamically, so that when a thread notices that an-
other thread from its own local cluster owns the lock, it can re-
duce its delay and increase its chances of acquiring the lock next.
This algorithm’s simplicity makes it quite practical. However, be-
cause the locks are test-and-test-and-set locks, they incur invalida-
tion traffic on every modification of the shared global lock variable,
which is especially costly on NUMA machines. The issue of fair-
ness that arises because threads backoff with different delays can
be addressed, but requires more tuning parameters, which invari-
ably makes the lock’s performance highly unreliable.

Luchangco et al. [15] overcame these drawbacks by introduc-
ing HCLH, a hierarchical version of the CLH queue-lock [4]. The
HCLH algorithm collects requests on each cluster into a local CLH-
style queue, and then has the thread at the head of the queue inte-
grate each cluster’s queue into a single global queue. This avoids
the overhead of spinning on a shared location and eliminates fair-
ness and starvation issues. The algorithm’s drawback is that it forms
the local queues of waiting threads by having each thread per-
form an atomicregister-to-memory-swap(SWAP) operation2 on
the shared head of the local queue, which becomes a contention
bottleneck, implying that the thread merging the local queue into
the global one must either wait for a long period (10s of microsec-
onds) or globally merge an unacceptably short local queue.

More recently, Dice et al. [7] showed that one could overcome
the synchronization overhead of HCLH locks by collecting local
queues using the flat-combining technique of Hendler et al. [8],
and then splicing them into the global queue. The resulting NUMA-
aware FC-MCS lock outperforms previous locks by at least a factor
of 2, but uses significantly more memory and is relatively compli-
cated.

In summary, the HBO lock has the benefit of being simple, but is
unfair, and requires significant application and platform dependent
tuning. Both HCLH and FC-MCS are fair and deliver much better
performance, but are rather complex, and it is therefore question-
able if they will be of general practical use.

2 On some architectures the SWAP operation is emulated using acompare-
and-swapinstruction loop.
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This paper presentslock cohorting, a new general technique for
turning practically any kind of spin-lock or spin-then-block lock
into a NUMA-aware lock that allows sequences of threads – local to
a given node/cluster – to execute consecutively with little overhead
and requiring very little tuning beyond the locks used to create the
cohort lock.

Apart from providing a new set of high performance NUMA-
aware locks, the important benefit of lock cohorting is that it is a
general transformation, not simply another NUMA-aware locking
algorithm. This provides an important software engineering advan-
tage: programmers do not have to adopt new and unfamiliar locks
into their system. Instead, they can apply the lock cohorting trans-
formation to their existing locks. This will hopefully allow them
to enhance the performance of their locks (by improving locality
of reference, enabled by the NUMA-awareness property of cohort
locks), while preserving many of the original properties of what-
ever locks their application uses.

1.1 Lock Cohorting in a Nutshell

Say we have a spin-lock of typeG that isthread-oblivious, that is,
allows the acquiring thread to differ from the releasing thread, and
another spin-lock of typeS that has thecohort detection property:
a thread releasing the lock can detect if it has a non-empty cohort
of threads concurrently attempting to acquire the lock.

We convert a collection of locksS andG into a single NUMA-
aware lock by having a single thread-oblivious global lockG and
by associating each NUMA clusteri with a distinct local lockSi

that has the cohort detection property. We say a cohort lock is
locked if and only if its global lockG is locked. LocksS andG

can be of different types. For example,S could be an MCS queue-
lock [10] andG a simpletest-and-test-and-set backoff lock[3] (BO)
as depicted in Figure 1. To access the critical section a thread must
hold both the local lockSi of its cluster, and the global lockG.
However, the trick is that given the special properties ofS andG,
once some thread in a cluster acquiresG, ownership of the cohort
lock can be passed in a deadlock-free manner from one thread in
cluster to the next using the local lockSi, without releasing the
global lock. To maintain fairness, the global lockG is at some point
released by some thread in the cohort (not necessarily the one that
acquired it), allowing a cohort of threads from another clusterSj to
take ownership of the lock.

In more detail, each thread attempting to enter the lock’s critical
section first acquires its local lockSi, and based on the state of the
local lock, decides if it can immediately enter the critical section
or must compete forG. A threadT leaving the critical section
first checks if it has a non-empty cohort (some local thread is
waiting onSi). If so, it will releaseSi without releasingG, having
set the state ofSi to indicate that this is a local release. On the
other hand, if its local cohort is empty,T will releaseG and then
releaseSi, settingSi’s state to indicate that the global lock has been
released. This indicates to the next local thread that acquiresSi that
it must re-acquireG before it can enter the critical section. The
cohort detection property is therefore necessary in order to prevent
a deadlock situation in which a thread leaves the local lock, without
releasing the global lock, when there is no subsequent thread in the
cohort, so the global lock may never be released.

The cohort lock’s overall fairness is easily controlled by decid-
ing when a cluster gives up the global lock. A simple cluster-local
policy is to give up the local lock after an allowed number consec-
utive local accesses. We note that a cohort lock constructed from
unfair underlying locks will itself be unfair, but if the underlying
locks are fair then the fairness of a cohort lock is determined by
the policy that decides when a cohort releases the global lock. If
a cohort retains ownership of the global lock for extended periods
then throughput may be improved but at a cost in fairness.

The benefit of the lock cohorting approach is that sequences
of local threads accessing the lock are formed at a very low cost.
Once a thread in a cluster has acquired the global lock, control of
the global lock is subsequently passed among contending threads
within the cluster – the cohort – with the efficiency of a local lock.
In other words, the common path to entering the critical section
is the same as a local version of the lock of typeS with fairness,
as we said, easily controlled by limiting the number of consecu-
tive local lock transfers allowed. This contrasts sharply with the
complex coordination mechanisms that create such sequences in
the previous top performing HCLH and FC-MCS locks, and the
platform-dependent, load-dependent, and application-dependent
performance tuning required for the HBO lock.

1.2 Cohort Lock Designs and Performance

It is easy to find efficient locks that are thread-oblivious: the BO
or ticket locks have this property, and since the global lock is not
expected to be highly contended, they can easily serve as the global
locks. With respect to the cohort detection property, there are locks
such as the MCS queue lock of Mellor-Crummey and Scott [10]
that provide cohort detection by design: each spinning thread’s
record in the queue has a pointer installed by its successor. There
are however locks, for example, BO locks, that require us to in-
troduce an explicitcohort detection mechanismto allow releasing
threads to determine if other cohort threads are attempting to ac-
quire the lock.

More work is needed when the lock algorithms are required to
be abortable. In an abortable lock, simply detecting that there is
a successor is not enough to allow a thread to release the local
lock but not the global lock. One must make sure there is a viable
successor, that is, one that will not abort after the thread releases the
local lock, as this might leave the global lock deadlocked. As we
show, one can convert the BO lock (which is abortable by design)
and the abortable CLH lock [14] into abortable (NUMA-aware)
cohort locks, which to our knowledge, are the first set of NUMA-
aware abortable queue-locks.

We tested our new lock cohorting transformation on an Ora-
cle SPARC Enterprise T5440TM Server, a 256-way 4-socket mul-
ticore machine. Our tests show several variations of cohort NUMA-
aware locks that outperform all prior algorithms, and in some situ-
ations are over 60% more scalable than FC-MCS, the most scalable
NUMA-aware lock in the literature. Furthermore, unlike FC-MCS,
we found that cohort lock designs are simple to implement and re-
quire significantly lower space than FC-MCS. Our novel abortable
NUMA-aware lock, the first of its kind, outperforms the HBO lock
(abortable by definition) and the abortable CLH lock [14] by about
a factor of 6. Our experiments withmemcached [2] demonstrate
that in some configuration settings cohort locks can improve the
application’s performance by over 25%, without degrading perfor-
mance on all other configurations. Finally, ourlibc allocator ex-
periments demonstrate how cohort locks can directly benefit multi-
threaded programs and significantly boost their cluster-level ref-
erence locality both for accesses by the allocator to allocation
metadata and for accesses by the application to allocated memory
blocks. In experiments conducted on a memory allocator stress test
benchmark [6], cohort locks allow the benchmark to scale up to
nearly a factor of 6X, while all other reported locks provided a
scalability gain restricted to about 50%.

We describe our construction in detail in Section 2, both our
general approach and seven specific example lock transformations.
We provide an experimental evaluation in Section 4.

2. The Lock Cohorting Transformation
In this section, we describe our new lock cohorting transformation
in detail. Assume that the system is organized into clusters (nodes)
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Figure 1. A NUMA-aware C-BO-MCS lock for two clusters. A
thread spins if its node state isbusy, and can enter the critical
section if the state islocal release. A thread attempts to take the
global lock if it sees the state set toglobal releaseor if it is added
as the first in the queue (setting a nulltail pointer to its own record).

of computing cores, each of which has a large cache that is shared
among the cores local to that cluster, so that inter-cluster commu-
nication is significantly more expensive than intra-cluster commu-
nication. We use the termclusterto capture the collection of cores,
and to make clear that they could be cores on a single multicore
chip, or cores on a collection of multicore chips (nodes) that have
proximity to the same memory or caching structure; it all depends
on the size of the NUMA machine at hand. We will also assume that
each cluster has a uniquecluster idknown to all threads running on
the cluster.

2.1 Designing a Cohort Lock

We describe lock cohorting in the context of spin-locks, although
it could be as easily applied to blocking-locks. We assume the
standard model of shared memory based on execution histories [9].

A lock is an object providing mutual exclusion withlock and
unlock methods, implemented in shared memory, and having the
usual safety and liveness properties (see [9]). At a minimum we
will require that the locks considered here will provide mutual ex-
clusion and be deadlock-free. In addition, we define the following
properties:

Definition A lock x is thread-oblivious, if in a given execution
history, for a lock method call ofx by a given thread, it allows
the matchingunlockmethod call (the nextunlockof x that follows
in the execution history) to be executed by a different thread.

Definition A lock x providescohort detectionif one can add a
new predicate methodalone?to x so that in any execution history,
if there is no other thread concurrently executing a lock method on
x, alone?will return true.

Note that we follow the custom of not using linearizability as
a correctness condition when defining our lock implementations.
In particular, our definition ofalone? refers to the behavior of

concurrent lock method calls and saysif rather thaniff so as to
allow false-positives: there might be a thread executing the lock
operation andalone?(not noticing it) could still return true. False-
positives are a performance concern but do not affect correctness.
False-negatives, however, could result in loss of progress. This
weaker definition is intended to allow for very relaxed and efficient
implementations ofalone?.

We construct a NUMA-aware cohort lock by having each clus-
ter i on the NUMA machine have a local instanceSi of a lock that
has the cohort detection property, and have an additional shared
thread-oblivious global lockG. LocksSi, i ∈ {1 . . . n} (wheren

is the number of clusters in the NUMA system), andG can be of
different types, for example, theSi could be slight modifications of
MCS queue-locks [10] andG a simple test-and-test-and-set back-
off lock [3] (BO) as depicted in Figure 1.

Thelockmethod of a thread in clusteri in a cohort lock operates
as follows. The state of the lockSi is modified so that it has a
different detectable state indicating if it has alocal releaseor a
global release.

1. Call lock on Si. If upon acquiring the lock the lock method
detects that the state is:

• A local release: proceed to enter the critical section.

• A global release: proceed to call thelock method of the
global lockG. OnceG is acquired, enter the critical section.

We define a specialmay-pass-localpredicate on the local lock
Si and the global lockG. Themay-pass-localpredicate indicates
if the lock state is such that the global lock should be released.
This predicate could, for example, be based on how long the global
lock has been continuously held on one cluster or on a count of
the number of times the local lock was acquired in succession
in a local releasestate. It defines a tradeoff between fairness and
performance, as typically the shorter successive access timemay-
pass-localgrants to a given cohort, the more it loses the benefit of
locality of reference in accessing the critical section.

Given this addedmay-pass-localpredicate, theunlockmethod
of a thread in clusteri in a cohort lock operates as follows.

1. Call thealone?method andmay-pass-localonSi.

• If both returnfalse: call the unlock method ofSi, setting
the release state tolocal release. The next owner ofSi can
directly enter the critical section.

• Otherwise: call theunlock method of the global lockG.
OnceG is released, call theunlock method ofSi, setting
the release state toglobal release.

As can be seen, the state of the lock upon release indicates to the
next local thread that acquiresSi if it must acquireG or not, and
allows a chain of local lock acquisitions without the need to access
the global lock. The immediate benefit is that sequences of local
threads accessing the lock are formed at a very low cost: once a
thread in a cluster has acquired the global lock, ownership is passed
among the cluster’s threads with the efficiency of a local lock. This
reduces overall cross-cluster communication and increases intra-
cluster locality of reference when accessing data within the critical
section.

3. Cohort Lock Designs
Though most locks can be used in the cohort locking transfor-
mation, we briefly explain six specific constructions here: The
first four are non-abortable (do not support timeouts [13]) locks
and the last two are abortable (timeout capable) locks. Of the
non-abortable locks, we first present a simpletest-and-test-and-set



backoff lock[3] (which we will refer to as the BO lock) based co-
hort lock that employs a BO lock globally and local BO locks per
NUMA cluster. We refer to this lock as the C-BO-BO lock. The
second lock is a similar combination of ticket locks [10], which we
call the C-TKT-TKT lock. The third is a combination of a global
BO lock, and local MCS locks [10] per NUMA cluster. The last
non-abortable lock contains MCS locks both globally and locally.
For the abortable locks, we first present an abortable variant of the
C-BO-BO lock, which we call the A-C-BO-BO lock, and then we
present an abortable cohort lock comprising of an abortable global
BO lock and abortable local CLH locks [14], which we call the
A-C-BO-CLH lock.

3.1 The C-BO-BO Lock

In the C-BO-BO lock, the local and global locks are both simple
BO locks. The BO lock is trivially thread-oblivious. However, we
need to augment the local BO lock to enable cohort detection by
exposing thealone?method. Specifically, to implement thealone?
method we need to add an indicator to the local BO lock that a
successor exists.

To that end we add to the lock a newsuccessor-existsboolean
field. This field is initially false, and is set totrue by a thread
immediately before it attempts to CAS the test-and-test-and-set
lock state. Once a thread succeeds in the CAS and acquires the
local lock, it writesfalse to thesuccessor-existsfield, effectively
resetting it. Thealone? method will check thesuccessor-exists
field, and if it is true, a successor must exist since it was set
after the reset by the local lock winner.Alone?returns the logical
complement ofsuccessor-exists.

The lock releaser uses thealone?method to determine if it can
correctly release the local lock inlocal releasestate. If it does
so, the following lock owner of the local lock implicitly inherits
ownership of the global BO lock. Otherwise, the local lock is in
the global releasestate, in which case, the new local lock owner
must acquire the global lock as well. Notice that it is possible that
another successor thread executinglock exists even if the field is
false, simply because the post-acquisition reset ofsuccessor-exists
by the local lock winner could have overwritten the successor’s
setting of thesuccessor-existsfield. This type of incorrect-false
result observed insuccessor-existsis allowed – it will at worst cause
an unnecessary release of the global lock, but not affect correctness
of the algorithm.

However, incorrect-false conditions can result in greater con-
tention at the global lock, which we would like to avoid. To that
end, a thread that spins on the local lock also checks thesuccessor-
existsflag, and sets it back totrue if it observes that the flag has
been reset (by the current lock owner). This is likely to lead to ex-
tra contention on the cache line containing the flag, but most of this
contention does not lie in the critical path of the lock acquisition
operation. Furthermore, intra-cluster write-sharing typically enjoys
low latency, mitigating any ill-effects of contention on cache lines
that might be modified by threads on the same cluster. These obser-
vations are confirmed in our empirical evaluation.

3.2 The C-TKT-TKT Lock

The C-TKT-TKT lock has the ticket lock [10] as both the local
lock, as well as the global lock. A traditional ticket lock consists
of two counters:requestandgrant. A thread intending to acquire
the lock first atomically increments therequestcounter and then
spins, waiting for thegrant counter to contain the incremented
requestvalue. The lock releaser subsequently releases the lock by
incrementing thegrant counter.

The ticket lock is trivially thread-oblivious; a thread can incre-
ment therequestand another thread can correspondingly increment
thegrantcounter. Cohort detection is also easy in the ticket lock; all

the thread needs to do is determine if therequestandgrantcounters
match, and if not, it means that there are more requesters waiting
to acquire the lock.

In C-TKT-TKT, a thread first acquires the local ticket lock, and
then the global ticket lock. To release the C-TKT-TKT lock, the
owner first determines if it has any cohorts that may be waiting to
acquire the lock. Thealone?method is a simple check to see if the
requestandgrant counters are the same. If not, it means that there
are additional requests posted by waiting cohort threads. In that
case, the owner informs the next cohort in line that it has inherited
the global lock by setting a specialtop-grantedfield that residees
in the local ticket lock.3 It then releases the local ticket lock by
incrementing thegrant counter. If therequestandgrant counters
are the same, the owner releases the global ticket lock and then the
local ticket lock (without setting thetop-grantedfield).

3.3 The C-BO-MCS Lock

The design of the C-BO-MCS lock, depicted in Figure 1, is also
straightforward. The BO lock is a simple test-and-test-and-set lock
with backoff, and is therefore thread-oblivious by definition: any
thread can release a lock taken by another.

We remind the reader that an MCS lock consists of a list of
records, one per thread, ordered by their arrival at the lock’stail
variable. Each thread adds its record to the lock by performing a
swap on a sharedtail. It then installs asuccessorpointer from the
record of its predecessor to its record in the lock. The predecessor,
upon releasing the lock, will follow the successor pointer and notify
the thread of the lock release by writing to a specialstatefield in
the successor’s record.

The MCS lock can be easily adapted to be the local cohort de-
tecting lock as follows. We implement thealone?method by simply
checking if a thread’s record has a non-null successor pointer. The
release state is augmented so that instead of simplebusyand re-
leasedstates, thestatefield encodesbusy, release localor release
global. Each thread will initialize its record state to busy unless
it encounters a null tail pointer, indicating it has no predecessor, in
which case it is in therelease globalstate and will access the global
lock.

With these modifications, the global BO lock and local modified
MCS locks can be plugged into the cohort lock protocol to deliver
a NUMA-aware lock.

3.4 The C-MCS-MCS Lock

The C-MCS-MCS lock comprises a global MCS lock and lo-
cal MCS locks. The cohort detection mechanism of the local
MCS locks is the same as in C-BO-MCS. So the implementation
of the local MCS lock remains the same. However, the thread-
obliviousness aspect is somewhat more interesting.

A key property of MCS is what is calledlocal spinning[10],
where a thread spin-waits on its MCS queue node, and is informed
by its predecessor thread that is has become the lock owner. There-
after, the thread can enter the critical section, and release the lock
by transferring lock ownership to its queue node’s successor. The
thread can subsequently do whatever it wants with its MCS queue
node; it usually deallocates it. In order to make the global MCS lock
thread-oblivious, the thread that enqueues its MCS queue node in
the global MCS lock’s queue cannot always get its node back im-
mediately after it releases the C-MCS-MCS lock – the node has to
be preserved in the MCS queue so as to let another cohort thread re-
lease the lock. We enable this feature by using thread-local pools of
MCS queue nodes. A thread that posts a request node in the global
MCS lock must get a free node from its local pool. On releasing

3 The top-grantedflag is reset by the thread that observed it set and took
possession of the the local ticket lock.



the global lock, the lock releaser can return the node to the original
thread’s pool. This circulation of MCS queue nodes can be done
very efficiently and does not impact performance of the lock [13].

With this extra modification we achieve a thread-oblivious MCS
lock, which can be combined with the local MCS locks that are
enabled with cohort detection to deliver the NUMA-aware C-MCS-
MCS lock.

3.5 The C-TKT-MCS Lock

The C-TKT-MCS lock combines local MCS queue locks with a
global ticket lock. We believe this lock combines the best of C-
TKT-TKT and C-MCS-MCS: First, because the global lock is a
ticket lock, it does not contain the complexity of circulating queue
nodes between threads as in C-MCS-MCS. Second, since the local
locks are MCS locks instead of ticket locks, the C-TKT-MCS lock
retains their local-spinning property. As we shall see in Section 4,
having local MCS locks indeed helps C-TKT-MCS to scale better
than C-TKT-TKT.

3.6 Abortable Cohort Locks

The property ofabortability [13] in a mutual exclusion lock enables
threads to abandon their attempt of acquiring the lock while they
are waiting to acquire the lock. Abortability poses an interesting
difficulty in cohort lock construction. Even if thealone?method,
which indicates that a cohort thread is waiting to acquire the lock,
returnsfalse (which means that there exists a cohort thread wait-
ing to acquire the lock), all the waiting cohort threads may subse-
quently abort their attempts to acquire the lock. This case, if not
handled correctly, can easily lead to a deadlock, where the global
lock is in the acquired state, and the local lock has been handed off
to a cohort thread that no longer exists, and may not appear in the
future either.

Thus, we must strengthen the requirements of the lock cohorting
transformation with respect to thecohort detectionproperty: if
alone?returnsfalse, then some thread concurrently executing the
local lock method will not abort before completing the locallock
method call. Notice that a thread that completed acquiring the local
lock with the release locallock state cannot be aborted since by
definition it is in the critical section.

3.6.1 The A-C-BO-BO Lock

The A-C-BO-BO lock is very similar to the C-BO-BO lock that we
described earlier, with the difference that aborting threads also reset
thesuccessor-existsfield in the local lock to inform the local lock
releaser that a waiting thread has aborted. Each spinning thread
reads this field while spinning, and sets it in case it was recently
reset by an aborting thread. Like the C-BO-BO lock, in A-C-BO-
BO, the local lock releaser checks to see if thesuccessor-exists
flag was set (which indicates that there exist threads in the local
cluster that are spinning to acquire the lock). If thesuccessor-exists
flag was set, the releaser can release the local BO lock by writing
release localinto the BO lock.4

However, at this point the releaser must double-check the
successor-existsfield to determine if it was cleared during the time
the releaser released the local BO lock. If so, the releaser conser-
vatively assumes that there may be no other waiting cohort, and
atomically changes the local BO lock’s state toglobal release, and
then releases the global BO lock.

4 Note that the BO lock can also be in 3 states:release global(which is the
default state, indicating that the lock is free to be acquired, but the acquirer
must thereafter acquire the global BO lock to execute the critical section),
busy(indicating that the lock is acquired by some thread), andrelease local
(indicating that the next acquirer of the lock implicitly inherits ownership
of the global BO lock).

3.6.2 The A-C-BO-CLH Lock

The A-C-BO-CLH lock has a BO lock as its global lock (which is
trivially abortable), and an abortable variant of the CLH lock [14]
(A-CLH) as its local lock. Like the MCS lock, the A-CLH lock also
consists of a list of records, one per thread, ordered by the arrival
of the threads at the lock’s tail. To acquire the A-C-BO-CLH lock,
a thread first must acquire its local A-CLH lock, and then explicitly
or implicitly acquire the global BO lock.

Because we build on the A-CLH lock, we will first briefly
review it as presented by Scott [14]. The A-CLH lock leverages
the property of “implicit” CLH queue predecessors, where a thread
that enqueues its node in the CLH queue spins on its predecessor
node to determine if it has become the lock owner. An aborting
thread marks its CLH queue node as aborted by simply making
its predecessor explicit in the node (i.e. by writing the address of
the predecessor node to theprev field of the thread’s CLH queue
node). The successor thread that is spinning on the aborted thread’s
node immediately notices the change and starts spinning on the new
predecessor found in the aborted node’sprev field. The successor
also returns the aborted CLH node to the corresponding thread’s
local pool.

The local lock in our A-C-BO-CLH builds on the A-CLH lock.
For local lock handoffs, much like the A-CLH lock, the A-C-BO-
CLH leverages the A-CLH queue structure in its cohort detection
scheme. A thread can identify the existence of cohorts by checking
the A-CLH lock’s tail pointer. If the pointer does not point to the
thread’s node, it means that a subsequent request to acquire the lock
was posted by another thread. However, now that threads can abort
their lock acquisition attempts, this simple check is not sufficient to
identify any “active” cohorts, because the ones that enqueued their
nodes may have aborted, or will abort.

In order to address this problem, we introduce a newsuccessor-
abortedflag in the A-CLH queue node. We colocate thesuccessor-
abortedflag with theprev field of each node so as to ensure that
both are read and modified atomically. Each thread sets this flag to
false, and its node’sprev field to busy, before enqueuing the node
in the CLH queue. An aborting thread atomically (with a CAS) sets
its node’s predecessor’ssuccessor-abortedflag totrue to inform its
predecessor that it has aborted (the thread subsequently updates its
node’sprev field to make the predecessor explicitly visible to the
successor).

While releasing the lock, a thread first checks its node’ssuccessor-
abortedflag to determine if the successor may have aborted. If not,
the thread can release the local lock by atomically (using aCAS
instruction) setting its node’sprev field to therelease localstate
(just like the release in C-BO-MCS). This use of aCAS coupled
with the colocation ofprev and successor-abortedfields ensures
that the successor thread cannot abort at the same time. The suc-
cessor can then determine that it has become the lock owner. If the
successor did abort (indicated by thesuccessor-abortedflag), the
thread releases the global BO lock, and then sets its node’s state to
release global.

Our use of aCAS instruction to do local lock handoffs seems
quite heavy-handed. And we conjecture that indeed it would be
counter-productive if theCAS induced cache coherence traffic be-
tween NUMA clusters. However, since theCAS targets memory
that is likely to already be resident in cache of the local cluster in
writable state, the cost of local transactions is quite low – equiv-
alent to astore instruction hitting the L2 cache on the system we
used for our empirical evaluation.

3.7 Bounding Local Lock Handoff Rates

All the locks described above are deeply unfair, and with even
modest amounts of contention can easily lead to thread starvation.
To address this problem, we add amay-pass-localmethod that



increments a simple counter of the number of times threads in a
cohort have consecutively acquired the lock in arelease localstate.
If the counter crosses a threshold (64) in our experiments, the lock
releaser releases the global lock, and then releases the local lock,
transitioning it to therelease globalstate. This simple solution
appears to work very effectively for all our algorithms.

4. Empirical Evaluation
We evaluated cohort locks, comparing them with the traditional, as
well as the more recent NUMA-aware locks, on multiple levels:
First we conducted several experiments on microbenchmarks that
stress test these locks in several ways. This gives us a good insight
into the performance characteristics of the locks. Second, we inte-
grated these locks inmemcached, a popular key-value data store
application, to study their impact on real world workload settings.
Third, we modified thelibc memory allocator to study the effects
of cohort locks on allocation intensive multi-threaded applications;
we present results of experiments on a microbenchmark [6].

Our microbenchmark evaluation clearly demonstrates that co-
hort locks outperform all prior locks by at least 60%. Additionally,
the abortable cohort locks scale vastly better (by a factor of 6) than
the state-of-the-art abortable locks. Furthermore, cohort locks im-
proved the performance ofmemcached by about 20% for write-
heavy workloads. Finally, ourlibc allocator experiments demon-
strate that simply replacing the lock used by the default Solaris al-
locator with a cohort lock can significantly boost cluster-level ref-
erence locality for accesses by the allocator to allocation metatdata
and for accesses by the application to allocated blocks, resulting
in improved performance for multi-threaded application that make
heavy use of memory allocation services.

In our evaluation we compare the performance of our non-
abortable and abortable cohort locks with existing state-of-the-art
locks in the respective categories. Specifically, for our microbench-
mark study, we present throughput results for our C-BO-BO, C-
TKT-TKT, C-BO-MCS, C-TKT-MCS and C-MCS-MCS cohort
locks. We compare these with MCS [10] (as a base line NUMA-
oblivious lock), and other NUMA-aware locks, namely, HBO [12],
HCLH [15], and FC-MCS [7]. We also evaluated our abortable co-
hort locks (namely, A-C-BO-BO and A-C-BO-CLH) by compar-
ing them with an abortable version of HBO, and the abortable CLH
lock [14].

Memcached usespthread locks for synchronization. To test
our locks withmemcached, we decided to adhere to the policy of
not changing thememcached sources or its binary. This choice is
facilitated by the fact that thepthread library is dynamically linked
to the application. So we can easily use a SolarisLD PRELOAD
interposelibrary that installs any kind of lock we want under the
pthread library API. The scalability results formemcached are
reported in Section 4.2. For thelibc allocator experiments, we used
the same interpose library to inject our locks into the allocator.

We implemented all of the above algorithms in C and compiled
them with the GCC 4.4.1 at optimization level -O3 in 32-bit mode.
The experiments were conducted on an Oracle T5440 series ma-
chine which consists of 4 Niagara T2+ SPARC chips, each chip
containing 8 cores, and each core containing 2 pipelines with 4
hardware thread contexts per pipeline, for a total of 256 hardware
thread contexts, running at a 1.4 GHz clock frequency. Each chip
has a 4MB L2 cache, and each core has a shared 8KB L1 data
cache. For all the NUMA-aware locks, a Niagara T2+ chip is the
NUMA clustering unit, so in all we had 4 NUMA clusters.

Memcached was evaluated using a standard client application
calledmemaslap, which is a part of a larger suite ofmemcached
applications calledlibmemcached. Results reported were averaged
over 3 test runs.
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Figure 2. The graph shows the average throughput in terms of
number of critical and non-critical section pairs executed per sec-
ond. The critical section accesses two distinct cache blocks (incre-
ments 4 integer counters on each block), and the non-critical sec-
tion is an idle spin loop of up to 4 microseconds.

4.1 Microbenchmark Evaluation

4.1.1 Scalability

We constructed what we consider to be a reasonable representa-
tive microbenchmark,LBench, to measure the scalability of vari-
ous lock algorithms. LBench launches a specified number of iden-
tical threads. Each thread loops as follows: acquire a central shared
lock, access shared variables in the critical section, release the lock,
and then execute a non-critical work phase of about 4 microsec-
onds. The critical section reads and writes shared variables resid-
ing on two distinct cache lines. At the end of a 60 second measure-
ment period the program reports the aggregate number of iterations
completed by all threads as well as statistics related to the distri-
bution of iterations completed by individual threads, which reflects
gross long-term fairness. Finally, the benchmark can be configured
to tally and report lock migrations.

Figure 2 depicts the performance of the non-abortable locks on
LBench. (We conducted other experiments varying the critical sec-
tion length, non-critical section length, and number of cache lines
accessed within the critical section, but observed similar results to
those reported). As a baseline to compare against, we measured the
throughput of the MCS lock, which is a classic scalable queue lock.
This lock performed the worst because it does not leverage refer-
ence locality, which is critical for good performance on NUMA
architectures. The HCLH, HBO and FC-MCS locks perform as ex-
pected – with FC-MCS generally performing the best among the
three. HBO’s performance, which is better than HCLH in this work-
load, is highly sensitive to the underlying workload, and is gener-
ally very unstable (as we will see in Section 4.2).

Our C-BO-BO lock scales very well, approaching the perfor-
mance of FC-MCS. Because it is based on the BO lock, C-BO-
BO is sensitive to backoff parameters – different workloads might
require different backoff parameters for the best possible perfor-
mance. However, this sensitivity is related only to the parameters
associated with local backoff locks, unlike HBO, where the backoff
parameters need to be tuned for both the local and remote backoffs.
Under C-BO-BO we expect that the global lock will remain lightly
contended; and in fact, in our implementation, threads contending
at the global BO lock continuously spin on it and never backoff,
much like the “bare bones” test-and-test-and-set lock. Our C-TKT-
TKT lock scales even better (generally 30-40% better than the prior
state-of-the-art NUMA-aware lock, FC-MCS). C-BO-MCS scales
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Figure 3. The graph shows the average number of L2 cache co-
herence misses per critical section for the experiment in Figure 2
(lower is better). The Y-axis is inlog scale.

the best with scalability 60% better than FC-MCS, whereas C-TKT-
MCS and C-MCS-MCS trail slightly behind C-BO-MCS.

In all the tests reported in this paper, the allowable maximum
number of consecutive local lock handoffs for cohort locks was
limited to a constant (64). As described in Section 3.7, this bound
is necessary to avoid the deep unfairness that the basic cohort locks
can possibly generate in an application. We conducted microbench-
mark tests (not reported in this paper) on cohort lock versions with-
out the local handoff limits and found that generally the deeply un-
fair versions out-scale the fair versions by about 10% during high
contention loads. However, in our tests we found that, for LBench,
the unfair versions typically led to local lock handoffs in the order
of hundreds of thousands before the lock was acquired by a re-
mote thread/cohort. Thus, we believe that the cost of 10% is small
to avoid the potential problem of gross long-term unfairness and
starvation.

4.1.2 Locality of Reference

Figure 3 provides the key explanation for the observed scalability
results. Recall that each chip (a NUMA cluster) on our experimen-
tal machine has an L2 cache shared by all cores on that chip. Fur-
thermore, the latency to access a cache block in the local L2 cache
is much lower than the latency to access a cache block on a remote
L2 cache (on our test machine, remote L2 access is approximately
4 times slower than local L2 access during light loads). The latter
also involves bus transactions that can adversely affect the latency
during high loads, further compounding the cost of remote L2 ac-
cesses. That is, remote L2 accesses always incur latency costs even
if the interconnect is otherwise idle, but they can also induce in-
terconnect channel contention if the system is under heavy load.
Figure 3 reports the L2 coherence miss rates collected during the
scalability experiment. These are the local L2 misses that were ful-
filled by a remote L2, which represents the local to remote lock
handoff events and related data movement.

MCS has a high L2 coherence miss rate because it is the fairest
among all the locks, and does not prioritize local lock acquisition
requests over remote requests. Interestingly, HCLH also has a high
miss rate, which clearly explains its performance in Figure 2. We
can attribute the high miss rate in HCLH to its complexity [7] and
high rates of accesses to shared lock metadata, which translates to
lower rate of batching of requests coming from the same NUMA
cluster. HBO shows a very good miss rate until the number of
threads is substantially high (64), after which, the miss rate deterio-
rates considerably. In our experiments with HBO, we observed that
its backoff parameters are highly sensitive to the underlying work-
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Figure 4. A closer look at the throughput results of Figure 2 for
low contention levels (1 to 16 threads).

load; the HBO lock results discussed here are for a version whose
backoff parameters were tuned for this microbenchmark (we will
show later that these same backoff parameters hurt the performance
of memcached). The L2 miss rate in FC-MCS degrades gradually,
but consistently, with increasing thread count.

All our cohort locks have significantly lower (by a factor of two
or greater – note that the Y-axis is inlog scale) L2 miss rates than
all other reported locks. This is because the cohort locks consis-
tently provide long sequences of successive accesses to the lock
from the same NUMA cluster (cohort), which accelerates the criti-
cal section performance by reducing inter-core coherence transfers
for data accessed within and by the critical section. There are two
reasons for longer cohort sequences (or, more generally,batches)
in cohort locks, compared to prior NUMA-aware locks, such as
FC-MCS. First, the simplicity of cohort locks streamlines the in-
struction sequence of batching requests in the cohort, which makes
the batching more efficient. Second, and more importantly, a cohort
batch can dynamically “grow” during its execution without the in-
terference by threads from other cohorts. As an example, consider
a cohort of 3 threadsT1, T2, andT3 (ordered in that order in a lo-
cal MCS queueM in a C-BO-MCS lock). LetT1 be the owner of
the global BO lock. SoT1 can enter its critical section, and hand-
off the BO lock (and the local MCS lock) toT2 on exit. The BO
lock will eventually be forwarded toT3. However, note that in the
meantime,T1 can return and post another request afterT3’s re-
quest inM . If T3 holds the lock during this time, it ends up hand-
ing it off to T1 after it is done executing its critical section. This
dynamic growth aspect of our cohort locks can significantly boost
local handoff rates when there is sufficient cluster-local contention.
This dynamic batch growth aspect in cohort locks contrasts with
the more “static” approach of other NUMA-aware locks, which in
turn gives more power to cohort locks to enhance the locality of ref-
erence of the critical section. In our experiments, we have observed
that the batching rate in all the locks is inversely proportional to
the lock migration rate and observed coherence traffic reported in
Figure 3, and that the batching rate in cohort locks increases more
quickly with contention compared to other locks.

4.1.3 Low Contention Performance

We believe that for a highly scalable lock to be practical, it must
also perform efficiently at low or zero contention levels. At face
value, the hierarchical nature of cohort locks appears to suggest
that they will be expensive at low contention levels. That is because
each thread must acquire both the local and the global locks, which
become a part of the critical path in low contention or contention
free scenarios. To understand this cost we took a closer look at
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Figure 5. The graph shows the standard deviation in percentage
points of per-thread throughput from the average throughput re-
ported in Figure 2 (the lower the standard deviation, the more fair
the lock is in practice).

the scalability results reported in Figure 2 with an eye toward
performance at low contention levels. Figure 4 zooms into that
part of Figure 2. Interestingly, we observed that the performance
of all the cohort locks was competitive with all other locks that do
not need to acquire locks at multiple levels in the hierarchy (viz.
MCS, HBO, and FC-MCS). On further reflection, we note that the
extra cost of multi-level lock acquisitions in cohort locks withers
away as background noise in the presence of non-trivial work in
the critical and non-critical sections. In principle, one can devise
contrived scenarios (for example, where the critical and non-critical
sections are empty) to show that cohort locks might perform worse
than other locks at low contention levels. However, we believe that
such scenarios are most likely unrealistic or far too rare to be of
any consequence. Even if one comes up with such a scenario, we
can add the same “bypass the local lock” optimization that was
employed in FC-MCS to minimize the flat combining overhead at
low thread counts.

4.1.4 Fairness

Given that cohort locks are inherently unfair (which is the key “fea-
ture” that all NUMA-aware locks harness and leverage to enhance
locality of reference for better performance), we were interested
in quantifying that unfairness. To that end, we report more data
from the experiment reported in Figure 2 on the standard devia-
tion of per-thread throughput from the average throughput of all
the threads. The results are shown in Figure 5. These results give
us a sense of how far each thread progressed during its one minute
of execution in a test run.

We found HBO to be the least fair lock, where some threads
executed only a handful of critical sections, while others completed
millions of critical sections. The next most unfair lock, to our
surprise, was C-BO-MCS. (Recall that the cohort locks contain a
constant limit of 64 local handoffs after which a lock releaser must
release the global and local locks.) On further reflection, the reason
for this unfairness is clear – the global BO lock in C-BO-MCS is
unfair. After a thread releases the global BO lock, causing the cache
block of the BO lock to be invalidated from other caches, and go
to modified state in the releaser’s cache, it immediately releases
the local lock, which is also quickly detected by the next thread
waiting to acquire the local lock. This next local thread, identifying
that it must acquire the global BO lock, almost instantly attempts
to do so, and usually succeeds because the BO lock’s cache block
is in its (and the last releaser’s) L1 or L2 cache. Hence the obvious
unfairness arises from unfairness in cache coherence arbitration.
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Figure 6. Abortable lock average throughput in terms of number
of critical and non-critical sections executed per second. The crit-
ical section accesses two distinct cache blocks (increments 4 inte-
gers counters on each block), and the non-critical section is an idle
spin loop of up to 4 micro seconds.

We also observe that the standard deviation for C-TKT-MCS and
C-MCS-MCS are low, because their global locks (ticket and MCS)
are comparatively fair.

C-BO-BO is fairer than C-BO-MCS because the interval be-
tween a lock releaser releasing the global lock and the next local
lock acquirer attempting to acquire the global BO lock is inflated
because the acquirer must first acquire the local BO lock. The ex-
tended interval increases the window in which a remote thread/co-
hort can acquire the global BO lock.

All other locks, MCS, HCLH, FC-MCS, and C-TKT-TKT are
also fair, as expected, with the standard deviation well under 5%
(the deviation of FC-MCS spikes to about 20% at 16 threads, but is
reasonably low at other concurrency levels).

4.1.5 Abortable Lock Performance

Our abortable lock experiments in Figure 6 make an equally com-
pelling case for cohort locks. Our cohort locks (A-C-BO-BO and
A-C-BO-CLH) outperform the best prior abortable lock (A-CLH)
and an abortable variant of HBO (called A-HBO in Figure 6, where
a thread aborts its lock acquisition by simply returning a failure flag
from the lock acquire operation) by up to a factor of 6. Since lock
handoff is a “local” operation in A-C-BO-CLH involving just the
lock releaser (that uses aCAS to release the lock) and the lock
acquirer (just like a CLH lock), A-C-BO-CLH scales significantly
better than A-C-BO-BO, where threads incur significant contention
with other threads on the same NUMA cluster to acquire the local
BO lock. (For these and other unreported experiments, the abort
rate was lower than 1%, which we believe is a reasonable rate.)

4.2 Memcached

Memcached [2] is a popular open-source, high-performance, dis-
tributed in-memory key-value data store that is typically used as
a caching layer for databases in high-performance applications.
Memcached has several high profile users including Facebook,
LiveJournal, Wikipedia, Flickr, Youtube, Twitter, etc.

In memcached, the key-value pairs are stored in a huge hash ta-
ble, and all server threads access this table concurrently. Access
to the entire table is mediated through a single lock (called the
cache lock). The cache lock is known to be a contention bottle-
neck [11], which we believe makes it a good candidate for the eval-
uation of cohort locks. Among other things, thememcached API
contains two fundamental operations on key-value pairs:get (that
returns the value for a give key) andset (that updates the value of



# pthread locks Fib-BO MCS HBO HBO (tuned) FC-MCS C-BO-BO C-TKT-TKT C-BO-MCS C-TKT-MCS C-MCS-MCS

1 1.00 0.89 0.99 0.83 1.01 0.83 0.99 0.82 0.81 0.77 0.95
4 3.06 3.17 3.15 1.58 3.37 2.70 3.11 3.09 3.09 3.05 2.99
8 4.37 4.48 4.47 1.96 4.43 4.25 3.48 4.46 4.45 4.49 4.45
16 4.55 4.59 4.60 2.55 4.58 4.47 2.56 4.56 4.60 4.58 4.53
32 4.47 4.57 4.53 3.05 4.53 4.18 3.03 4.54 4.57 4.56 4.55
64 4.40 4.54 4.45 3.37 4.51 4.26 2.98 4.52 4.49 4.51 4.44
96 4.39 4.50 4.46 3.37 4.52 4.32 2.97 4.48 4.50 4.52 4.46
128 4.39 4.49 4.47 3.39 4.52 4.28 2.98 4.46 4.49 4.53 4.46

(a) 90%gets and 10%sets
1 1.00 1.04 1.15 0.97 0.93 0.95 1.14 1.00 0.92 1.12 1.11
4 2.84 3.21 3.30 1.45 3.23 2.73 2.98 3.10 3.19 2.98 3.16
8 3.55 4.63 4.51 1.73 4.75 4.00 2.46 4.53 4.51 4.47 4.32
16 3.56 4.95 4.93 2.17 5.18 4.51 2.59 5.08 5.05 5.03 4.97
32 3.42 4.93 4.77 2.57 5.10 3.92 2.79 4.99 5.04 4.95 4.94
64 3.29 4.81 4.45 2.86 5.08 3.93 2.67 4.88 4.88 4.79 4.74
96 3.32 4.80 4.47 2.84 5.07 3.94 2.69 4.84 4.86 4.78 4.71
128 3.32 4.81 4.24 2.84 5.09 3.90 2.68 4.87 4.85 4.71 4.68

(b) 50%gets and 50%sets
1 1.00 1.05 1.03 1.02 1.22 1.00 1.03 0.97 1.05 1.06 1.13
4 2.62 3.03 2.74 1.43 2.95 2.44 2.82 2.65 2.66 2.57 2.60
8 2.74 3.80 3.62 1.76 4.23 3.21 2.27 3.80 3.80 3.74 3.61
16 2.77 4.08 3.92 1.99 4.76 3.62 2.50 4.54 4.52 4.48 4.30
32 2.67 4.08 3.94 2.27 4.86 3.31 2.53 4.81 4.70 4.70 4.50
64 2.59 3.89 3.62 2.49 4.63 3.34 2.44 4.47 4.41 4.40 4.23
96 2.62 3.92 3.65 2.49 4.64 3.35 2.45 4.44 4.40 4.38 4.23
128 2.59 3.94 3.51 2.49 4.67 3.33 2.44 4.46 4.47 4.30 4.20

(c) 10%gets and 90%sets

Table 1. Scalability results (in terms of speedup over single thread runs that use pthread locks) formemcached for (a) read-heavy (90%get
operations, and 10%set operations), (b) mixed (50%get operations, and 50%set operations), and (c) write-heavy (10%get operations, and
90%set operations) configurations.

the given key). These are the most frequently used API calls by
memcached client applications.

To generate load for thememcached server, we use memaslap, a
load generation and benchmarking tool formemcached. memaslap
is a part of the standard client library (called libmemcached) for
memcached [1]. memaslap generates amemcached workload con-
sisting of a configurable mixture ofget andset requests. We ex-
perimented with a wide range ofget-set mixture ratio, ranging
from configurations with 90%gets and 10%sets (representing
read-heavy workloads) to configurations with 10%gets and 90%
sets (representing write-heavy workloads). The read-heavy work-
loads are the norm formemcached applications. The write-heavy
workloads, however uncommon, do exist. Examples of write-heavy
workloads include servers that continuously collect huge amounts
of sensor network data, or servers that constantly update statis-
tical information on a large collection of items. These applica-
tions at times can exhibit bi-modal behavior, alternating between
write-heavy and read-heavy phases, collecting and processing large
amounts of data respectively.

As discussed earlier, we used an interpose library to inject
our locks under thepthreads API used bymemcached. For our
experiments, we ran an instance ofmemcached on the T5440
server, and an instance of memaslap on another 128-way Niagara II
machine. We varied the thread count formemcached from 1 to 128
(the maximum number of threads permitted bymemcached). We
ran the memaslap client with 32 threads for all tests so as to keep
the load generation high and constant. For each test, the memaslap
clients were executed for one minute, after which the throughput,
in terms of operations per second, was reported. Table 1 shows
the relative performance ofmemcached while it was configured
to use the different locks. The figure contains 3 tables for three
differentget-set proportions, each representing read-heavy, mixed,
and write-heavy loads respectively. Each entry in each table is
normalized to the performance ofpthread locks at 1 thread.

The first column in all the tables represents the number of
memcached threads used in the test. The second column reports
the performance ofpthread locks. The remaining columns report
the performance ofmemcached when used with MCS, a test-and-

test-and-set lock with Fibonnaci backoff (Fib-BO), the HBO lock
(representing prior NUMA-aware locks), a tuned version of HBO
(we had to add this version because the default version did not scale
well), and all the non-abortable cohort locks discussed in Section 3.
Note that the fine tuning for the HBO lock was done on the local
and remote backoff parameters. The version that we first used in
the experiments (column titled HBO) had the backoff parameters
tuned for our microbenchmark experiments. As is clear from all
three tables, these did not work well onmemcached. This clearly
demonstrates the instability of HBO’s performance.

For read-heavy loads (Table 1 (a)), the performance of all the
locks except HBO and C-BO-BO is identical, with all locks en-
abling over 5X scaling. For loads with moderately highset ratios
(Table 1 (b)), we observe that all the spin locks except HBO and C-
BO-BO significantly outperformpthread locks, and are generally
competitive with each other. For write-heavy loads (Table 1 (c)), the
NUMA-aware locks clearly out-scale the NUMA-oblivious locks
by at least 20%. The untuned HBO and C-BO-BO locks scale
poorly in all configurations. It appears that C-BO-BO suffers be-
cause of contention on the local BO locks, whereas HBO suffers
with contention on the central lock. FC-MCS performs better than
HBO and C-BO-BO, but worse than all other spinlocks.

4.3 malloc

Memory allocation and deallocation is a common operation appear-
ing frequently in all kinds of applications. A vast number of C/C++
programs uselibc’s malloc and free functions for managing their
dynamic memory requirements. These functions are thread-safe,
but on Solaris the default allocator relies on synchronization via a
single lock to guarantee thread safety. For memory intensive multi-
threaded applications that uselibc’s malloc andfree functions, this
lock can quickly become a contention bottleneck. Consequently,
we found it to be an attractive evaluation tool for cohort locks. We
modifiedlibc’s malloc.c file to usepthread locks, and injected our
locks in the code via the interpose library discussed previously.

We used themmicro benchmark [6] to test various lock algo-
rithms via the interpose library. In the benchmark, each thread re-
peatedly allocates a block of memory (size 64 bytes), initializes it



thrds pthread locks fib-BO MCS HBO HBO (tuned) FC-MCS C-BO-BO C-TKT-TKT C-BO-MCS C-TKT-MCS C-MCS-MCS

1 198 211 197 206 206 190 197 195 191 191 183
2 197 237 224 204 231 231 223 220 214 218 208
4 125 258 271 206 300 288 253 326 252 307 249
8 145 294 307 230 382 322 320 486 326 456 432
16 151 318 307 244 420 327 483 592 513 576 564
32 149 323 307 248 291 329 783 839 941 827 814
64 149 302 303 259 151 328 883 1011 1183 1001 952
128 146 225 290 263 73 321 932 884 1120 863 822
255 142 139 277 257 38 264 926 695 961 682 651

Table 2. Scalability results of themalloc experiment (in terms ofmalloc-free pairs executed per millisecond.

(by writing to the first 4 words of it), and subsequently frees it. Each
test runs for 10 seconds and reports the aggregate number ofmal-
loc-free pairs completed in that interval. We add an artificial delay
after each of the calls tomalloc and free functions. This delay is
a configurable parameter; we injected a delay of about 4 microsec-
onds, which enables some concurrency between the thread execut-
ing the critical sections (malloc or free), and the threads waiting in
the delay loop. The results of the tests appear in Table 2, showing
that cohort locks outperform all the other locks. While the other
locks scale the benchmark’s throughput by up to a factor of 2X, the
scalability with cohort locks ranges between a factor of 5X and 6X.

There are two reasons for this impressive scalability of cohort
locks: First, they tend to effectively batch requests coming from the
same NUMA cluster, thus improving the lock handoff latency. The
second reason has to do with the recycling of memory blocks deal-
located by threads: Thelibc allocator maintains a singlesplay tree
of free nodes of various sizes (it also maintains lists of small – 40
bytes or less – memory blocks used for small size requests). Since
mmicro requests 64 byte blocks, all the requests go to the splay
tree. A newly inserted node always goes to the root of the tree,
and as a result, the most recently deallocated memory blocks tend
to be reallocated more often (allocation is done by returning the
first matching block in the splay tree). Thus a small number of tree
nodes (and their respective memory blocks) are continuously cir-
culated between threads. The tree node cache lines are updated on
every delete (malloc) and insert (free). Additionally, the allocated
memory blocks are also updated by the benchmark. All these writes
play a crucial role in the performance of the underlying locks used
by the allocator. Because all the cohort locks create large batches
of consecutive requests coming from the same NUMA cluster, they
manage to recycle blocks in the same cluster for extended periods.
In contrast, for all other locks, a block of memory migrates more
frequently between NUMA clusters, thus leading to greater coher-
ence traffic, and the resulting performance degradation.

While highly scalable allocators exist and have been described
at length in the literature, selection of such allocators often entails
making tradeoffs such as footprint against scalability. In part be-
cause of such concerns the default on Solaris remains the simple
single-lock allocator. By employing cohort locks under the default
libc allocator we can improve the scalability of applications but
without forcing the user or developer to confront the issues and
decisions related to alternative allocators.

FC-MCS does not show any significant improvements over
prior locks. The performance of HBO continues to be unstable: The
first HBO column in Table 2 shows thelibc allocator’s performance
with the backoff parameters picked from our earlier microbench-
mark experiments, while the second HBO column, titled: HBO
(tuned), uses the parameters tuned for good performance onmem-
cached. In this case, the tuned version of HBO scales better than
the untuned version up to modest levels of contention. However,
the performance dramatically deteriorates with higher contention.
In contrast, cohort locks are vastly more stable across a broad swath
of workloads. This property of “parameter parsimony” makes co-
hort locks a significantly more attractive choice for deployment in
real world applications.

5. Conclusion
The growing size of multicore machines is likely to shift the de-
sign space in the NUMA and CC-NUMA direction, requiring a sig-
nificant rehash of existing concurrent algorithms and synchroniza-
tion mechanisms. This paper tackles the most basic of the multi-
core synchronization algorithms, the lock, presenting a simple new
lock design approach –lock cohorting– fit for NUMA machines.
The wide range of cohort locks we presented in the paper, along
with their empirical evaluation, demonstrates that lock cohorting is
not only a simple approach to NUMA-aware lock construction, but
also a powerful one that delivers locks that out-scale prior locks by
significant margins, while remaining competitive at low contention
levels.
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