1,178 research outputs found

    The relationship between metabolic rate and sociability is altered by food-deprivation

    Get PDF
    Individuals vary in the extent to which they associate with conspecifics, but little is known about the energetic underpinnings of this variation in sociability. Group-living allows individuals to find food more consistently, but within groups, there can be competition for food items. Individuals with an increased metabolic rate could display decreased sociability to reduce competition. Long-term food deprivation (FD) may alter any links between sociability and metabolic rate by affecting motivation to find food. We examined these issues in juvenile qingbo carp Spinibarbus sinensis, to understand how FD and metabolic rate affect sociability. Like many aquatic ectotherms, this species experiences seasonal bouts of FD. Individuals were either: (i) food-deprived for 21 days; or (ii) fed a maintenance ration (control). Fish from each treatment were measured for standard metabolic rate (SMR) and tested for sociability twice: once in the presence of a control stimulus shoal and once with a food-deprived stimulus shoal. Control individuals ventured further from stimulus shoals over a 30-min trial, while food-deprived fish did not change their distance from stimulus shoals as trials progressed. Control fish with a higher SMR were least sociable. Well-fed controls showed decreased sociability when exposed to food-deprived stimulus shoals, but there was evidence of consistency in relative sociability between exposures to different shoal types. Results contrast with previous findings that several days of fasting causes individuals to decrease associations with conspecifics. Prolonged FD may cause individuals to highly prioritize food acquisition, and the decreased vigilance that would accompany continuous foraging may heighten the need for the antipredator benefits of shoaling. Conversely, decreased sociability in well-fed fish with a high SMR probably minimizes intraspecific competition, allowing them to satisfy an increased energetic demand while foraging. Together, these results suggest that FD – a challenge common for many ectothermic species – can affect individual sociability as well as the attractiveness of groups towards conspecifics. In addition, the lack of a link between SMR and sociability in food-deprived fish suggests that, in situations where group membership is linked to fitness, the extent of correlated selection on metabolic traits may be context-dependent

    Standard metabolic rate predicts growth trajectory of juvenile Chinese crucian carp (Carassius auratus) under changing food availability

    Get PDF
    Phenotypic traits vary greatly within populations and can have a significant influence on aspects of performance. The present study aimed to investigate the effects of individual variation in standard metabolic rate (SMR) on growth rate and tolerance to food-deprivation in juvenile crucian carp (Carassius auratus) under varying levels of food availability. To address this issue, 19 high and 16 low SMR (individuals were randomly assigned to a satiation diet for 3 weeks, whereas another 20 high and 16 low SMR individuals were assigned to a restricted diet (approximately 50% of satiation) for the same period. Then, all fish were completely food-deprived for another 3 weeks. High SMR individuals showed a higher growth rate when fed to satiation, but this advantage of SMR did not exist in food-restricted fish. This result was related to improved feeding efficiency with decreased food intake in low SMR individuals, due to their low food processing capacity and maintenance costs. High SMR individuals experienced more mass loss during food-deprivation as compared to low SMR individuals. Our results here illustrate context-dependent costs and benefits of intraspecific variation in SMR whereby high SMR individuals show increased growth performance under high food availability but had a cost under stressful environments (i.e., food shortage)

    China’s emerging global role: dissatisfied responsible great power

    Get PDF
    China has (re)emerged as a great power in a world not of its own making. The distribution of power in major organisations and the dominant norms of international interactions are deemed to unfairly favour the existing Western powers, and at times obstruct China’s ability to meet national development goals. Nevertheless, engaging the global economy has been a key source of economic growth (thus helping to maintain regime stability), and establishing China’s credentials as a responsible global actor is seen as a means of ensuring continued access to what China needs. As an emerging great power that is also still in many respects a developing country, China’s challenge is to change the global order in ways that do not cause global instability or generate crises that would damage China’s own ability to generate economic growth and ensure political stability

    Why growth equals power - and why it shouldn't : constructing visions of China

    Get PDF
    When discussing the success of China's transition from socialism, there is a tendency to focus on growth figures as an indication of performance. Whilst these figures are indeed impressive, we should not confuse growth with development and assume that the former necessarily automatically generates the latter. Much has been done to reduce poverty in China, but the task is not as complete as some observers would suggest; particularly in terms of access to health, education and welfare, and also in dealing with relative (rather than absolute) depravation and poverty. Visions of China have been constructed that exaggerate Chinese development and power in the global system partly to serve political interests, but partly due to the failure to consider the relationship between growth and development, partly due to the failure to disaggregate who gets what in China, and partly due to the persistence of inter-national conceptions of globalised production, trade, and financial flows

    Preliminary Study of Acute Changes in Emotion Processing in Trauma Survivors with PTSD Symptoms

    Get PDF
    Accumulating evidence suggests traumatic experience can rapidly alter brain activation associated with emotion processing. However, little is known about acute changes in emotion neurocircuits that underlie PTSD symptom development. To examine acute alterations in emotion circuit activation and structure that may be linked to PTSD symptoms, thirty-eight subjects performed a task of appraisal of emotional faces as their brains were functionally and structurally studied with MRI at both two weeks and three months after motor vehicle collision (MVC). As determined by symptoms reported in the PTSD Checklist at three months, sixteen survivors developed probable PTSD, whereas the remaining 22 did not meet criteria for PTSD diagnosis (non-PTSD). The probable PTSD group had greater activation than the non-PTSD group in dorsal and ventral medial prefrontal cortex (dmPFC and vmPFC) while appraising fearful faces within two weeks after MVC and in left insular cortex (IC) three months after MVC. dmPFC activation at two weeks significantly positively correlated with PTSD symptom severity at two weeks (R = 0.462, P = 0.006) and three months (R = 0.418, p = 0.012). Changes over time in dmPFC activation and in PTSD symptom severity were also significantly positively correlated in the probable PTSD group (R = 0.641, P = 0.018). A significant time by group interaction was found for volume changes in left superior frontal gyrus (SFG, F = 6.048, p = 0.019) that partially overlapped dmPFC active region. Between two weeks and three months, left SFG volume decreased in probable PTSD survivors. These findings identify alterations in frontal cortical activity and structure during the early post-trauma period that appear to be associated with development of PTSD symptoms

    Altered Regulation of Striatal Neuronal N-Methyl-D-Aspartate Receptor Trafficking by Palmitoylation in Huntington Disease Mouse Model

    Get PDF
    N-methyl-D-aspartate receptors (NMDARs) play a critical role in synaptic signaling, and alterations in the synaptic/extrasynaptic NMDAR balance affect neuronal survival. Studies have shown enhanced extrasynaptic GluN2B-type NMDAR (2B-NMDAR) activity in striatal neurons in the YAC128 mouse model of Huntington disease (HD), resulting in increased cell death pathway activation contributing to striatal vulnerability to degeneration. However, the mechanism(s) of altered GluN2B trafficking remains unclear. Previous work shows that GluN2B palmitoylation on two C-terminal cysteine clusters regulates 2B-NMDAR trafficking to the surface membrane and synapses in cortical neurons. Notably, two palmitoyl acyltransferases (PATs), zDHHC17 and zDHHC13, also called huntingtin-interacting protein 14 (HIP14) and HIP14-like (HIP14L), directly interact with the huntingtin protein (Htt), and mutant Htt disrupts this interaction. Here, we investigated whether GluN2B palmitoylation is involved in enhanced extrasynaptic surface expression of 2B-NMDARs in YAC128 striatal neurons and whether this process is regulated by HIP14 or HIP14L. We found reduced GluN2B palmitoylation in YAC128 striatum, specifically on cysteine cluster II. Consistent with that finding, the palmitoylation-deficient GluN2B Cysteine cluster II mutant exhibited enhanced, extrasynaptic surface expression in striatal neurons from wild-type mice, mimicking increased extrasynaptic 2B-NMDAR observed in YAC128 cultures. We also found that HIP14L palmitoylated GluN2B cysteine cluster II. Moreover, GluN2B palmitoylation levels were reduced in striatal tissue from HIP14L-deficient mice, and siRNA-mediated HIP14L knockdown in cultured neurons enhanced striatal neuronal GluN2B surface expression and susceptibility to NMDA toxicity. Thus, altered regulation of GluN2B palmitoylation levels by the huntingtin-associated PAT HIP14L may contribute to the cell death-signaling pathways underlying HD

    The Evolution of Sunspot Magnetic Fields Associated with a Solar Flare

    Full text link
    Solar flares occur due to the sudden release of energy stored in active-region magnetic fields. To date, the pre-cursors to flaring are still not fully understood, although there is evidence that flaring is related to changes in the topology or complexity of an active region's magnetic field. Here, the evolution of the magnetic field in active region NOAA 10953 was examined using Hinode/SOT-SP data, over a period of 12 hours leading up to and after a GOES B1.0 flare. A number of magnetic-field properties and low-order aspects of magnetic-field topology were extracted from two flux regions that exhibited increased Ca II H emission during the flare. Pre-flare increases in vertical field strength, vertical current density, and inclination angle of ~ 8degrees towards the vertical were observed in flux elements surrounding the primary sunspot. The vertical field strength and current density subsequently decreased in the post-flare state, with the inclination becoming more horizontal by ~7degrees. This behaviour of the field vector may provide a physical basis for future flare forecasting efforts.Comment: Accepted for Publication in Solar Physics. 16 pages, 4 figure
    corecore