1,911 research outputs found

    Neural activity in the frontal pursuit area does not underlie pursuit target selection

    Get PDF
    AbstractThe frontal pursuit area (FPA) contains neurons that are directionally selective for pursuit eye-movements. We found that FPA neurons discriminate target from distracter too late to account for pursuit directional selection. Rather, the timing of neuronal discrimination is linked to pursuit onset, suggesting a role in motor execution. We also found buildup of activity of FPA neurons prior to pursuit onset that correlated with eye acceleration. These results show that the FPA is unlikely to be involved in selection of initial pursuit direction, but could be involved in motor preparation by increasing pursuit gain prior to pursuit onset

    Expression and purification of an adenylation domain from a eukaryotic nonribosomal peptide synthetase: Using structural genomics tools for a challenging target

    Get PDF
    Nonribosomal peptide synthetases (NRPSs) are large multimodular and multidomain enzymes that are involved in synthesising an array of molecules that are important in human and animal health. NRPSs are found in both bacteria and fungi but most of the research to date has focused on the bacterial enzymes. This is largely due to the technical challenges in producing active fungal NRPSs, which stem from their large size and multidomain nature. In order to target fungal NRPS domains for biochemical and structural characterisation, we tackled this challenge by using the cloning and expression tools of structural genomics to screen the many variables that can influence the expression and purification of proteins. Using these tools we have screened 32 constructs containing 16 different fungal NRPS domains or domain combinations for expression and solubility. Two of these yielded soluble protein with one, the third adenylation domain of the SidN NRPS (SidNA3) from the grass endophyte Neotyphodium lolii, being tractable for purification using Ni-affinity resin. The initial purified protein exhibited poor solution behaviour but optimisation of the expression construct and the buffer conditions used for purification, resulted in stable recombinant protein suitable for biochemical characterisation, crystallisation and structure determination

    Pegasus: A Geosynchronous Launch Profile

    Get PDF
    Pegasus is a low cost system which can carry a 600 pound payload to 250 nautical mile polar orbits as well as larger payloads to lower altitude/ lower inclination orbits or suborbital trajectories. The craft is carried aloft by a conventional transport/bomber-class aircraft and launched from level flight at approximately 40,000 ft. The first flight of Pegasus was made on April 5, 1990 over the Western Test Range at an altitude of 43,000 feet using the NASA B-52. The unmanned launch vehicle was developed jointly by Orbital Science Corporation (OSC) and Hercules Aerospace Company and the first flight which reached a 320 nmi orbit was conducted by, DARPA (Defense Advanced Research Projects Agency) and NASA\u27s Goddard Space Flight Center. The Pegasus launcher is 49.2 feet in length, has a diameter of 50 inches and a gross weight of 41,000 pounds. The payload can have a length up to 72 inches and a diameter of 46 inches. A 3-axis, gravity gradient or spin-stabilized spacecraft can be achieved or a number of small satellites can be inserted. A preliminary propulsion design analysis for the launching of a small geosynchronous Earth satellite aboard Pegasus was performed. The problem for the positioning of the satellite is presented with emphasis on the effects of orbital parameters such as the Low-Earth Orbit (LEO) altitude, propellant, and launch site latitude on the spacecraft\u27s propellant budget and beginning of life (BOL) mass. A comparison of conventional launch vehicles and the Pegasus launch vehicle is also presented. A Pegasus fourth stage was sized based on the propellant mass required for geosynchronous orbit (GEO) injection. Recommendations for a launch profile were made based upon minimizing the propellant used in the apogee boost motor (ABM) and perigee boost motor (PBH) or fourth stage used to place a small satellite into geosynchronous orbit

    Performance of Major Flare Watches from the Max Millennium Program (2001-2010)

    Get PDF
    The physical processes that trigger solar flares are not well understood and significant debate remains around processes governing particle acceleration, energy partition, and particle and energy transport. Observations at high resolution in energy, time, and space are required in multiple energy ranges over the whole course of many flares in order to build an understanding of these processes. Obtaining high-quality, co-temporal data from ground- and space- based instruments is crucial to achieving this goal and was the primary motivation for starting the Max Millennium program and Major Flare Watch (MFW) alerts, aimed at coordinating observations of all flares >X1 GOES X-ray classification (including those partially occulted by the limb). We present a review of the performance of MFWs from 1 February 2001 to 31 May 2010, inclusive, that finds: (1) 220 MFWs were issued in 3,407 days considered (6.5% duty cycle), with these occurring in 32 uninterrupted periods that typically last 2-8 days; (2) 56% of flares >X1 were caught, occurring in 19% of MFW days; (3) MFW periods ended at suitable times, but substantial gain could have been achieved in percentage of flares caught if periods had started 24 h earlier; (4) MFWs successfully forecast X-class flares with a true skill statistic (TSS) verification metric score of 0.500, that is comparable to a categorical flare/no-flare interpretation of the NOAA Space Weather Prediction Centre probabilistic forecasts (TSS = 0.488).Comment: 19 pages, 2 figures, accepted for publication in Solar Physic

    Design of a pressurized lunar rover

    Get PDF
    A pressurized lunar rover is necessary for future long-term habitation of the moon. The rover must be able to safely perform many tasks, ranging from transportation and reconnaissance to exploration and rescue missions. Numerous designs were considered in an effort to maintain a low overall mass and good mobility characteristics. The configuration adopted consists of two cylindrical pressure hulls passively connected by a pressurized flexible passageway. The vehicle has an overall length of 11 meters and a total mass of seven metric tons. The rover is driven by eight independently powered two meter diameter wheels. The dual-cylinder concept allows a combination of articulated frame and double Ackermann steering for executing turns. In an emergency, the individual drive motors allow the option of skid steering as well. Two wheels are connected to either side of each cylinder through a pinned bar which allows constant ground contact. Together, these systems allow the rover to easily meet its mobility requirements. A dynamic isotope power system (DIPS), in conjunction with a closed Brayton cycle, supplied the rover with a continuous supply of 8.5 kW. The occupants are all protected from the DIPS system's radiation by a shield of tantalum. The large amount of heat produced by the DIPS and other rover systems is rejected by thermal radiators. The thermal radiators and solar collectors are located on the top of the rear cylinder. The solar collectors are used to recharge batteries for peak power periods. The rover's shell is made of graphite-epoxy coated with multi-layer insulation (MLI). The graphite-epoxy provides strength while the thermally resistant MLI gives protection from the lunar environment. An elastomer separates the two materials to compensate for the thermal mismatch. The communications system allows for communication with the lunar base with an option for direct communication with earth via a lunar satellite link. The various links are combined into one signal broadcast in the S-band at 2.3 GHz. The rover is fitted with a parabolic reflector disk for S-band transmission, and an omnidirectional antenna for local extravehicular activity (EVA) communication. The rover's guidance, navigation, and control subsystem consists of an inertial guidance system, an orbiting lunar satellite, and an obstacle avoidance system. In addition, the rover is equipped with a number of external fixtures including two telerobotic arms, lights, cameras, EVA storage, manlocks, a docking fixture, solar panels, thermal radiators, and a scientific airlock. In conclusion, this rover meets all of the design requirements and clearly surpasses them in the areas of mobility and maneuverability
    corecore