3 research outputs found
Targeted, High-Resolution RNA Sequencing of Non-coding Genomic Regions Associated With Neuropsychiatric Functions
The human brain is one of the last frontiers of biomedical research. Genome-wide association studies (GWAS) have succeeded in identifying thousands of haplotype blocks associated with a range of neuropsychiatric traits, including disorders such as schizophrenia, Alzheimer’s and Parkinson’s disease. However, the majority of single nucleotide polymorphisms (SNPs) that mark these haplotype blocks fall within non-coding regions of the genome, hindering their functional validation. While some of these GWAS loci may contain cis-acting regulatory DNA elements such as enhancers, we hypothesized that many are also transcribed into non-coding RNAs that are missing from publicly available transcriptome annotations. Here, we use targeted RNA capture (‘RNA CaptureSeq’) in combination with nanopore long-read cDNA sequencing to transcriptionally profile 1,023 haplotype blocks across the genome containing non-coding GWAS SNPs associated with neuropsychiatric traits, using post-mortem human brain tissue from three neurologically healthy donors. We find that the majority (62%) of targeted haplotype blocks, including 13% of intergenic blocks, are transcribed into novel, multi-exonic RNAs, most of which are not yet recorded in GENCODE annotations. We validated our findings with short-read RNA-seq, providing orthogonal confirmation of novel splice junctions and enabling a quantitative assessment of the long-read assemblies. Many novel transcripts are supported by independent evidence of transcription including cap analysis of gene expression (CAGE) data and epigenetic marks, and some show signs of potential functional roles. We present these transcriptomes as a preliminary atlas of non-coding transcription in human brain that can be used to connect neurological phenotypes with gene expression
Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2
Familial Adult Myoclonic Epilepsy (FAME) is characterised by cortical myoclonic tremor
usually from the second decade of life and overt myoclonic or generalised tonic-clonic seizures.
Four independent loci have been implicated in FAME on chromosomes (chr) 2, 3, 5
and 8. Using whole genome sequencing and repeat primed PCR, we provide evidence that
chr2-linked FAME (FAME2) is caused by an expansion of an ATTTC pentamer within the first
intron of STARD7. The ATTTC expansions segregate in 158/158 individuals typically affected
by FAME from 22 pedigrees including 16 previously reported families recruited worldwide.
RNA sequencing from patient derived fibroblasts shows no accumulation of the AUUUU or
AUUUC repeat sequences and STARD7 gene expression is not affected. These data, in
combination with other genes bearing similar mutations that have been implicated in FAME,
suggest ATTTC expansions may cause this disorder, irrespective of the genomic locus
involvedSupplementary Information:
Supplementary Data 1;
Supplementary Data 2;
Reporting Summary.NHMRC;
Women’s and Children’s Hospital Research Foundation;
Muir Maxwell Trust;
Epilepsy Society;
The European Fund for Regional Development;
The province of Friesland, Dystonia Medical Research Foundation;
Stichting Wetenschapsfonds Dystonie Vereniging;
Fonds Psychische Gezondheid;
Phelps Stichting;
The Italian Ministry of Health;
Istituto Superiore di Sanità , Italy;
Undiagnosed Disease Network Italy;
The Fondation maladies rares, University Hospital Essen and
UK Department of Health’s NIHR.https://www.nature.com/ncommspm2020Neurolog
Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2
Familial Adult Myoclonic Epilepsy (FAME) is characterised by cortical myoclonic tremor usually from the second decade of life and overt myoclonic or generalised tonic-clonic seizures. Four independent loci have been implicated in FAME on chromosomes (chr) 2, 3, 5 and 8. Using whole genome sequencing and repeat primed PCR, we provide evidence that chr2-linked FAME (FAME2) is caused by an expansion of an ATTTC pentamer within the first intron of STARD7. The ATTTC expansions segregate in 158/158 individuals typically affected by FAME from 22 pedigrees including 16 previously reported families recruited worldwide. RNA sequencing from patient derived fibroblasts shows no accumulation of the AUUUU or AUUUC repeat sequences and STARD7 gene expression is not affected. These data, in combination with other genes bearing similar mutations that have been implicated in FAME, suggest ATTTC expansions may cause this disorder, irrespective of the genomic locus involved