13 research outputs found

    Buccal alterations in diabetes mellitus

    Get PDF
    Long standing hyperglycaemia besides damaging the kidneys, eyes, nerves, blood vessels, heart, can also impair the function of the salivary glands leading to a reduction in the salivary flow. When salivary flow decreases, as a consequence of an acute hyperglycaemia, many buccal or oral alterations can occur such as: a) increased concentration of mucin and glucose; b) impaired production and/or action of many antimicrobial factors; c) absence of a metalloprotein called gustin, that contains zinc and is responsible for the constant maturation of taste papillae; d) bad taste; e) oral candidiasis f) increased cells exfoliation after contact, because of poor lubrication; g) increased proliferation of pathogenic microorganisms; h) coated tongue; i) halitosis; and many others may occur as a consequence of chronic hyperglycaemia: a) tongue alterations, generally a burning mouth; b) periodontal disease; c) white spots due to demineralization in the teeth; d) caries; e) delayed healing of wounds; f) greater tendency to infections; g) lichen planus; h) mucosa ulcerations. Buccal alterations found in diabetic patients, although not specific of this disease, have its incidence and progression increased when an inadequate glycaemic control is present

    Comparison of salivary proteome of children with different sensitivities for bitter and sweet tastes: association with body mass index

    Get PDF
    Background/objectives: Oral sensorial perception is a key aspect in food choices and knowing the mechanisms modulating such perception is of major importance in the context of child obesity, which is reaching high rates in Mediterranean countries. Salivary proteome has been linked to taste sensitivity in adults. The aim of this study was to search for differences in salivary proteomes of children with different bitter or sweet taste sensitivities and to assess if these potential differences are associated with their body mass index percentile (BMI percentile). Subjects/methods: 387 children aged 8-9 years old were assessed for BMI percentile and classified according to their sensitivity to bitter and sweet tastes, according to their caffeine and sucrose detection thresholds, respectively. Saliva protein composition was compared among taste sensitivity groups, taking into account BMI percentile and gender, using gel-based proteomics approaches, coupled to mass spectrometry for protein identification. Results: Among the salivary proteins related to bitter taste sensitivity, higher levels of cystatins were observed in bitter-sensitive children, in the case of those of normal weight, and in bitter low-sensitive, in the case of overweight children. For sweetness, the relationship between saliva and taste perception was also dependent on BMI percentile, with several proteins (including salivary cystatins) differing between taste sensitivity groups, with disparities arising between normal-weight and overweight children. Cystatin isoforms A, B and SA were observed to be considerably increased in saliva from obese children. Conclusions: Salivary proteome is related with sensitivities to bitter and sweet tastes in children, but the association is dependent on BMI percentile and gender

    Design of thermolabile bacteriophage repressor mutants by comparative molecular modeling

    Get PDF
    Comparative molecular modeling was performed with repressor protein Rro of the temperate Lactococcus lactis bacteriophage r1t using the known 3D-structures of related repressors in order to obtain thermolabile derivatives of Rro. Rro residues presumed to stabilize a nonhomologous but structurally conserved hydrophobic pocket, which was shown to be important for thermostability of the Escherichia coli bacteriophage lambda repressor Cl, were randomized. Of the derivatives that exhibited various temperature-sensitive phenotypes, one was shown to hold promise for both fundamental and industrial applications that require the controlled production of (heterologous) proteins in L. lactis.</p

    Comparative Fe and Zn K-edge X-ray absorption spectroscopic study of the ferroxidase centres of human H-chain ferritin and bacterioferritin from Desulfovibrio desulfuricans

    Get PDF
    Iron uptake by the ubiquitous iron-storage protein ferritin involves the oxidation of two Fe(II) ions located at the highly conserved dinuclear "ferroxidase centre" in individual subunits. We have measured X-ray absorption spectra of four mutants (K86Q, K86Q/E27D, K86Q/E107D, and K86Q/E27D/E107D, involving variations of Glu to Asp on either or both sides of the dinuclear ferroxidase site) of recombinant human H-chain ferritin (rHuHF) in their complexes with reactive Fe(II) and redox-inactive Zn(II). The results for Fe-rHuHf are compared with those for recombinant Desulfovibrio desulfuricans bacterioferritin (DdBfr) in three states: oxidised, reduced, and oxidised/Chelex-treated. The X-ray absorption near-edge region of the spectrum allows the oxidation state of the iron ions to be assessed. Extended X-ray absorption fine structure simulations have yielded accurate geometric information that represents an important refinement of the crystal structure of DdBfr; most metal-ligand bonds are shortened and there is a decrease in ionic radius going from the Fe(II) to the Fe(III) state. The Chelex-treated sample is found to be partly mineralised, giving an indication of the state of iron in the cycled-oxidised (reduced, then oxidised) form of DdBfr, where the crystal structure shows the dinuclear site to be only half occupied. In the case of rHuHF the complexes with Zn(II) reveal a surprising similarity between the variants, indicating that the rHuHf dinuclear site is rigid. In spite of this, the rHuHf complexes with Fe(II) show a variation in reactivity that is reflected in the iron oxidation states and coordination geometries
    corecore