4 research outputs found

    Modified solid ion-selective electrode for potentiometric determination of sulfide in oil refineries water

    No full text
    A selective electrode was manufactured to determine the sulfur ions by sedimentation method in industrial waters in oil refineries of North Refineries Company, Baiji, Iraq. The linear response on a wide range of concentration (from 1.0·10–1 to 1.0·10–6M) Na2S with a Nernst response of 28.229 mv per decade, theoretical value for slope of 29.58 mv per decade, correlation factor of 0.9998, detection limit of 2.287·10–7 at 25–35°C, pH 6.0–12.0, and the best concentration of the filling solution of 10–6M with a fast response time (5–13 s). The direct method were %RSD for 0.5772– –0.7430, %RE for –0.1, 3.7 and %REC for 99.9, 103.7

    Charge transfer complex-based spectrophotometric analysis of famotidine in pure and pharmaceutical dosage forms

    No full text
    A straightforward and efficient spectrum technique was created using Ortho-chloranil as the electron acceptor (-acceptor) in a charge transfer (CT) complex formation reaction to determine the concentration of famotidine (FMD) in solutions. Compared to the double-distilled blank solution, the reaction result detected a definite violet colour at a maximum absorption wavelength of 546 nm, For concentrations range 2—28 µg/ml, the technique demonstrated excellent compliance with Beer-Law and Lambert's, as evidenced by its molar absorptivity of 2159.648 L mol−1 cm–1. Lower detection limits of 0.3024 µg/ml and 1.471 µg/ml, respectively, were discovered. The complexes of famotidine and Ortho-chloranil were found to have a 2:1 stoichiometry. Additionally, the suggested approach effectively estimated famotidine concentrations in pharmaceutical formulations, particularly in tablet form.Validerad;2024;Nivå 2;2024-03-07 (hanlid);Full text license: CC BY</p

    Electrochemical defluorination of water: an experimental and morphological study

    No full text
    This experimental study concerns the elimination of fluoride from water using an electrocoagulation reactor having a variable flow direction in favour of increasing the electrolysing time, saving the reactor area, and water mixing. The detention time of the space-saver EC reactor (S-SECR) was measured and compared to the traditional reactors using an inert dye (red drain dye). Then, the influence of electrical current (1.5 ≤ δ ≤ 3.5 mA cm−2), pH of water (4 ≤ pH ≤ 10), and distance between electrodes (5 ≤ ϕ ≤ 15) on the defluoridation of water was analysed. The effect of the electrolysing activity on the electrodes' morphology was studied using scanning electron microscopy (SEM). Additionally, the operational cost was calculated. The results confirmed the removal of fluoride using S-SECR met the guideline of the World Health Organization (WHO) for fluoride levels in drinking water of ≤1.5 mg/L. S-SECR abated fluoride concentration from 20 mg/L to the WHO's guideline at δ, ϕ, pH, operational cost, and power consumption of 2.5 mA cm−2, 5 mm, 7, 0.346 USD m−3, and 5.03 kWh m−3, respectively. It was also found the S-SECR enhanced the detention time by 190% compared to the traditional reactors. The appearance of dents and irregularities on the surface of anodes in the SEM images proves the electrolysing process.Validerad;2022;Nivå 2;2022-04-29 (sofila)</p

    Minimizing the Fluoride Load in Water Using the Electrocoagulation Method: An Experimental Approach

    No full text
    The abundant presence of fluoride (F-) in surface water bodies is an environmental concern because of its effects on human health; medical reports confirmed that fluoride intake above 1.5 mg/L leads to many health complications, including but not limited to weak bones and enamel fluorosis. Thus, the World Health Organisation (WHO) defines 1.20 mg/L as the maximum permissible F- concentration in drinking water. The electrocoagulation method (EC) is globally practised to remove many pollutants from water due to its cost-effectiveness, safety, and ease of use. However, EC has some drawbacks, such as the lack of reactors&rsquo; design. In this study, a new EC reactor, which uses four drilled aluminium electrodes and a variant cross-section section container, was designed and used to remove F- from water. The design of the new EC eliminated the need for water mixers. The ability of the new EC unit to remove F- from synthetic water was evaluated at different current densities (CD) (1&ndash;3 mA/cm2), electrode distances (ELD) (5&ndash;15 mm), pH of the solution (pHoS) (4&ndash;10), and initial F- concentrations (IFC) (5&ndash;20 mg/L). The outcomes of this study prove that the new reactor could remove as much as 98.3% of 20 mg/l of F- at CD, ELD, pHoS, and IFC of 2 mA/cm2, 5 mm, and 4 and 10 mg/L, respectively
    corecore