9,717 research outputs found

    Discrete Torsion in Perturbative Heterotic String Theory

    Full text link
    In this paper we analyze discrete torsion in perturbative heterotic string theory. In previous work we have given a purely mathematical explanation of discrete torsion as the choice of orbifold group action on a B field, in the case that d H = 0; in this paper, we perform the analogous calculations in heterotic strings where d H is nonzero.Comment: 15 pages, LaTeX; v2: typos fixe

    Physical Results from Unphysical Simulations

    Full text link
    We calculate various properties of pseudoscalar mesons in partially quenched QCD using chiral perturbation theory through next-to-leading order. Our results can be used to extrapolate to QCD from partially quenched simulations, as long as the latter use three light dynamical quarks. In other words, one can use unphysical simulations to extract physical quantities - in this case the quark masses, meson decay constants, and the Gasser-Leutwyler parameters L_4-L_8. Our proposal for determining L_7 makes explicit use of an unphysical (yet measurable) effect of partially quenched theories, namely the double-pole that appears in certain two-point correlation functions. Most of our calculations are done for sea quarks having up to three different masses, except for our result for L_7, which is derived for degenerate sea quarks.Comment: 26 pages, 12 figures (discussion on discretization errors at end of sec. IV clarified; minor improvements in presentation; results unchanged

    Is There A Democracy Overload ?

    Get PDF

    Renormalization-group analysis of the validity of staggered-fermion QCD with the fourth-root recipe

    Get PDF
    I develop a renormalization-group blocking framework for lattice QCD with staggered fermions. Under plausible, and testable, assumptions, I then argue that the fourth-root recipe used in numerical simulations is valid in the continuum limit. The taste-symmetry violating terms, which give rise to non-local effects in the fourth-root theory when the lattice spacing is non-zero, vanish in the continuum limit. A key role is played by reweighted theories that are local and renormalizable on the one hand, and that approximate the fourth-root theory better and better as the continuum limit is approached on the other hand.Comment: Minor corrections. Revtex, 58 page

    Order of the Chiral and Continuum Limits in Staggered Chiral Perturbation Theory

    Full text link
    Durr and Hoelbling recently observed that the continuum and chiral limits do not commute in the two dimensional, one flavor, Schwinger model with staggered fermions. I point out that such lack of commutativity can also be seen in four-dimensional staggered chiral perturbation theory (SChPT) in quenched or partially quenched quantities constructed to be particularly sensitive to the chiral limit. Although the physics involved in the SChPT examples is quite different from that in the Schwinger model, neither singularity seems to be connected to the trick of taking the nth root of the fermion determinant to remove unwanted degrees of freedom ("tastes"). Further, I argue that the singularities in SChPT are absent in most commonly-computed quantities in the unquenched (full) QCD case and do not imply any unexpected systematic errors in recent MILC calculations with staggered fermions.Comment: 14 pages, 1 figure. v3: Spurious symbol, introduced by conflicting tex macros, removed. Clarification of discussion in several place

    Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks

    Get PDF
    We present a lattice calculation of the hadronic vacuum polarization and the lowest-order hadronic contribution to the muon anomalous magnetic moment, a_\mu = (g-2)/2, using 2+1 flavors of improved staggered fermions. A precise fit to the low-q^2 region of the vacuum polarization is necessary to accurately extract the muon g-2. To obtain this fit, we use staggered chiral perturbation theory, including the vector particles as resonances, and compare these to polynomial fits to the lattice data. We discuss the fit results and associated systematic uncertainties, paying particular attention to the relative contributions of the pions and vector mesons. Using a single lattice spacing ensemble (a=0.086 fm), light quark masses as small as roughly one-tenth the strange quark mass, and volumes as large as (3.4 fm)^3, we find a_\mu^{HLO} = (713 \pm 15) \times 10^{-10} and (748 \pm 21) \times 10^{-10} where the error is statistical only and the two values correspond to linear and quadratic extrapolations in the light quark mass, respectively. Considering systematic uncertainties not eliminated in this study, we view this as agreement with the current best calculations using the experimental cross section for e^+e^- annihilation to hadrons, 692.4 (5.9) (2.4)\times 10^{-10}, and including the experimental decay rate of the tau lepton to hadrons, 711.0 (5.0) (0.8)(2.8)\times 10^{-10}. We discuss several ways to improve the current lattice calculation.Comment: 44 pages, 4 tables, 17 figures, more discussion on matching the chpt calculation to lattice calculation, typos corrected, refs added, version to appear in PR

    Applications of Partially Quenched Chiral Perturbation Theory

    Full text link
    Partially quenched theories are theories in which the valence- and sea-quark masses are different. In this paper we calculate the nonanalytic one-loop corrections of some physical quantities: the chiral condensate, weak decay constants, Goldstone boson masses, B_K and the K+ to pi+ pi0 decay amplitude, using partially quenched chiral perturbation theory. Our results for weak decay constants and masses agree with, and generalize, results of previous work by Sharpe. We compare B_K and the K+ decay amplitude with their real-world values in some examples. For the latter quantity, two other systematic effects that plague lattice computations, namely, finite-volume effects and unphysical values of the quark masses and pion external momenta are also considered. We find that typical one-loop corrections can be substantial.Comment: 22 pages, TeX, refs. added, minor other changes, version to appear in Phys. Rev.

    Current Physics Results from Staggered Chiral Perturbation Theory

    Get PDF
    We review several results that have been obtained using lattice QCD with the staggered quark formulation. Our focus is on the quantities that have been calculated numerically with low statistical errors and have been extrapolated to the physical quark mass limit and continuum limit using staggered chiral perturbation theory. We limit our discussion to a brief introduction to staggered quarks, and applications of staggered chiral perturbation theory to the pion mass, decay constant, and heavy-light meson decay constants.Comment: 18 pages, 4 figures, commissioned review article, to appear in Mod. Phys. Lett.

    Staggered Chiral Perturbation Theory

    Full text link
    We discuss how to formulate a staggered chiral perturbation theory. This amounts to a generalization of the Lee-Sharpe Lagrangian to include more than one flavor (i.e. multiple staggered fields), which turns out to be nontrivial. One loop corrections to pion and kaon masses and decay constants are computed as examples in three cases: the quenched, partially quenched, and full (unquenched) case. The results for the one loop mass and decay constant corrections have already been presented in Ref. [1].Comment: talk presented by C. Aubin at Lattice2002(spectrum); 3 pages, 1 figur

    Enhanced chiral logarithms in partially quenched QCD

    Get PDF
    I discuss the properties of pions in ``partially quenched'' theories, i.e. those in which the valence and sea quark masses, mVm_V and mSm_S, are different. I point out that for lattice fermions which retain some chiral symmetry on the lattice, e.g. staggered fermions, the leading order prediction of the chiral expansion is that the mass of the pion depends only on mVm_V, and is independent of mSm_S. This surprising result is shown to receive corrections from loop effects which are of relative size mSlnmVm_S \ln m_V, and which thus diverge when the valence quark mass vanishes. Using partially quenched chiral perturbation theory, I calculate the full one-loop correction to the mass and decay constant of pions composed of two non-degenerate quarks, and suggest various combinations for which the prediction is independent of the unknown coefficients of the analytic terms in the chiral Lagrangian. These results can also be tested with Wilson fermions if one uses a non-perturbative definition of the quark mass.Comment: 14 pages, 3 figures, uses psfig. Typos in eqs (18)-(20) corrected (alpha_4 is replaced by alpha_4/2
    corecore