7,334 research outputs found

    Self-Consistent Determination of Coupling Shifts in Broken SU(3)

    Get PDF
    The possibility that certain patterns of SU(3) symmetry breaking are dynamically enhanced in baryon-meson couplings is studied by bootstrap methods. For the strong couplings, a single dominant enhancement is found. It produces very large symmetry-breaking terms, transforming like an octet, as often conjectured. Experimental consequences are listed, such as a reduction of K-baryon couplings relative to π-baryon couplings which is in accord with the experimental weakness of K relative to π production in many circumstances, such as photoproduction and multi-BeV cosmic-ray collisions. For parity-violating nonleptonic couplings, a dominant octet enhancement is again found, as mentioned in a previous paper, which leads to an excellent fit with experiment. For parity-conserving nonleptonic couplings, on the other hand, several different enhancements compete, and the only conclusion we can draw is that terms with the "abnormal" transformation properties brought in by strong symmetry-breaking corrections are present. Our work provides a dynamical derivation of various phenomenological facts associated with SU(6), such as the dominance of the 35 representation in parity-violating nonleptonic decays

    Geostatistical merging of weather radar data with a sparse rain gauge network in Queensland

    Get PDF
    Many parts of Australia, including much of Queensland and Northern Australia, tend to have sparse rain gauge coverage. To provide rainfall information across Australia, several gridded daily rainfall datasets such as those available through the Australian Water Availability Project and Scientific Information for Land Owners services have been developed. These daily grids are produced by interpolation of rain gauge data and therefore can provide unrealistic rainfall estimates in areas that have few rain gauges. To obtain rainfall data at a higher spatial resolution, weather radars and satellites can provide coverage over a large area although their measurements come with considerable uncertainty. Various approaches have been developed to adjust radar and satellite data and statistically merge them with rain gauge measurements in interpolation schemes, the goal being to retain the information on the spatial distribution of rainfall provided by remote sensing while also taking advantage of the greater accuracy of the rain gauges, but many of these techniques have been applied primarily on shorter time scales of an hour or less. This paper applies some existing methods for geostatistical merging of radar data with sparse rain gauge networks and evaluates the performance of the approaches using the Mt Stapylton radar in Brisbane and 15 surrounding rain gauges. Summer and winter data from 01/12/2013 to 28/02/2018 are considered. The radar data is corrected for mean field bias using quantile mapping and is used to develop the variogram models for use in Kriging. The performance of Kriging the gauge data using the radar variogram is compared with conditional merging and Kriging with radar values introduced as a drift variable. Leave-one-out cross-validation is used to evaluate the performance of the methods. We find some disagreement between all radar-based approaches and the validation gauge measurements with typical daily root-mean-square errors being between 10mm and 20mm for all approaches. Some outliers with substantially higher RMSE are noted for some days in the unadjusted radar data as well as in the corrected and interpolated data. For winter data the bias-correction and interpolation steps increased the agreement between the radar data and the validation gauges, but this improvement was not observed in the summer data. In addition, due to the low number of gauges the performance of the interpolation is extremely sensitive to the rain gauge values, with certain combinations of rain gauge values and choice of validation gauge leading to extremely large cross-validation errors. The results indicate that while incorporating the radar data makes it possible to perform Kriging with few gauges ona single day's data, this is not an ideal approach for quantitative precipitation estimation and further steps should be taken to improve the radar-gauge correlation

    Co-crystalization and in vitro biological characterization of 5-Aryl-4-(5-substituted-2-4-dihydroxyphenyl)-1,2,3-thiadiazole Hsp90 inhibitors

    Get PDF
    A potential therapeutic strategy for targeting cancer that has gained much interest is the inhibition of the ATP binding and ATPase activity of the molecular chaperone Hsp90. We have determined the structure of the human Hsp90α N-terminal domain in complex with a series of 5-aryl-4-(5-substituted-2-4-dihydroxyphenyl)-1,2,3-thiadiazoles. The structures provide the molecular details for the activity of these inhibitors. One of these inhibitors, ICPD 34, causes a structural change that affects a mobile loop, which adopts a conformation similar to that seen in complexes with ADP, rather than the conformation generally seen with the pyrazole/isoxazole-resorcinol class of inhibitors. Competitive binding to the Hsp90 N-terminal domain was observed in a biochemical assay, and these compounds showed antiproliferative activity and induced apoptosis in the HCT116 human colon cancer cell line. These inhibitors also caused induction of the heat shock response with the upregulation of Hsp72 and Hsp27 protein expression and the depletion of Hsp90 clients, CRAF, ERBB2 and CDK4, thus confirming that antiproliferative activity was through the inhibition of Hsp90. The presence of increased levels of the cleavage product of PARP indicated apoptosis in response to Hsp90 inhibitors. This work provides a framework for the further optimization of thiadiazole inhibitors of Hsp90. Importantly, we demonstrate that the thiadiazole inhibitors display a more limited core set of interactions relative to the clinical trial candidate NVP-AUY922, and consequently may be less susceptible to resistance derived through mutations in Hsp9

    Noradrenaline inhibits exocytosis via the G protein βγ subunit and refilling of the readily releasable granule pool via the αi1/2 subunit.

    Get PDF
    The molecular mechanisms responsible for the ‘distal’ effect by which noradrenaline (NA) blocks exocytosis in the β-cell were examined by whole-cell and cell-attached patch clamp capacitance measurements in INS 832/13 β-cells. NA inhibited Ca2+-evoked exocytosis by reducing the number of exocytotic events, without modifying vesicle size. Fusion pore properties also were unaffected. NA-induced inhibition of exocytosis was abolished by a high level of Ca2+ influx, by intracellular application of antibodies against the G protein subunit Gβ and was mimicked by the myristoylated βγ-binding/activating peptide mSIRK. NA-induced inhibition was also abolished by treatment with BoNT/A, which cleaves the C-terminal nine amino acids of SNAP-25, and also by a SNAP-25 C-terminal-blocking peptide containing the BoNT/A cleavage site. These data indicate that inhibition of exocytosis by NA is downstream of increased [Ca2+]i and is mediated by an interaction between Gβγ and the C-terminus of SNAP-25, as is the case for inhibition of neurotransmitter release. Remarkably, in the course of this work, a novel effect of NA was discovered. NA induced a marked retardation of the rate of refilling of the readily releasable pool (RRP) of secretory granules. This retardation was specifically abolished by a Gαi1/2 blocking peptide demonstrating that the effect is mediated via activation of Gαi1 and/or Gαi2

    Onset of Phase Synchronization in Neurons Conneted via Chemical Synapses

    Full text link
    We study the onset of synchronous states in realistic chaotic neurons coupled by mutually inhibitory chemical synapses. For the realistic parameters, namely the synaptic strength and the intrinsic current, this synapse introduces non-coherences in the neuronal dynamics, yet allowing for chaotic phase synchronization in a large range of parameters. As we increase the synaptic strength, the neurons undergo to a periodic state, and no chaotic complete synchronization is found.Comment: to appear in Int. J. Bif. Chao

    Pathological slow-wave activity and impaired working memory binding in post-traumatic amnesia

    Get PDF
    Associative binding is key to normal memory function and is transiently disrupted during periods of post-traumatic amnesia (PTA) following traumatic brain injury (TBI). Electrophysiological abnormalities including low-frequency activity are common following TBI. Here, we investigate associative memory binding during PTA and test the hypothesis that misbinding is caused by pathological slowing of brain activity disrupting cortical communication. Thirty acute moderate-severe TBI patients (25 males; 5 females) and 26 healthy controls (20 males; 6 females) were tested with a precision working memory paradigm requiring the association of object and location information. Electrophysiological effects of TBI were assessed using resting-state EEG in a subsample of 17 patients and 21 controls. PTA patients showed abnormalities in working memory function and made significantly more misbinding errors than patients who were not in PTA and controls. The distribution of localisation responses was abnormally biased by the locations of non-target items for patients in PTA suggesting a specific impairment of object and location binding. Slow wave activity was increased following TBI. Increases in the delta-alpha ratio indicative of an increase in low-frequency power specifically correlated with binding impairment in working memory. Connectivity changes in TBI did not correlate with binding impairment. Working memory and electrophysiological abnormalities normalised at six-month follow-up. These results show that patients in PTA show high rates of misbinding that are associated with a pathological shift towards lower frequency oscillations

    Searching a bitstream in linear time for the longest substring of any given density

    Full text link
    Given an arbitrary bitstream, we consider the problem of finding the longest substring whose ratio of ones to zeroes equals a given value. The central result of this paper is an algorithm that solves this problem in linear time. The method involves (i) reformulating the problem as a constrained walk through a sparse matrix, and then (ii) developing a data structure for this sparse matrix that allows us to perform each step of the walk in amortised constant time. We also give a linear time algorithm to find the longest substring whose ratio of ones to zeroes is bounded below by a given value. Both problems have practical relevance to cryptography and bioinformatics.Comment: 22 pages, 19 figures; v2: minor edits and enhancement

    Ultralong Copper Phthalocyanine Nanowires with New Crystal Structure and Broad Optical Absorption

    Full text link
    The development of molecular nanostructures plays a major role in emerging organic electronic applications, as it leads to improved performance and is compatible with our increasing need for miniaturisation. In particular, nanowires have been obtained from solution or vapour phase and have displayed high conductivity, or large interfacial areas in solar cells. In all cases however, the crystal structure remains as in films or bulk, and the exploitation of wires requires extensive post-growth manipulation as their orientations are random. Here we report copper phthalocyanine (CuPc) nanowires with diameters of 10-100 nm, high directionality and unprecedented aspect ratios. We demonstrate that they adopt a new crystal phase, designated eta-CuPc, where the molecules stack along the long axis. The resulting high electronic overlap along the centimetre length stacks achieved in our wires mediates antiferromagnetic couplings and broadens the optical absorption spectrum. The ability to fabricate ultralong, flexible metal phthalocyanine nanowires opens new possibilities for applications of these simple molecules
    • …
    corecore