108 research outputs found

    CONTROL OF METAL SURFACES MACHINED IN ACCORDANCE WITH THE DIAMOND NANOMACHINING TECHNOLOGY BASED ON THE ELECTRON WORK FUNCTION

    Get PDF
    Dimensional machining technology is based on the use of integrated geometric parameters of machined surfaces. Technological impact of a pick results in oxidation processes and changes in physic-chemical parameters of surface. Control of only geometric parameters is insufficient to describe characteristics of machining and formation of ultra-smooth surfaces. The electron work function is therefore used. The aim of the work was to study electrophysical states of optic surfaces of non-ferrous metals and alloys in relation to geometric and physic-chemical parameters according to the distribution of the electron work function over the surface. We conducted the study on experimental metal samples made of copper and aluminum alloy, machined in accordance with the diamond nanomachining technology. The diamond nanomachining technology would be capable of ensuring the roughness of non-ferrous metals and alloys machined at the level of Ra ≤ 0,005 µm. Modernized Kelvin probe was used as the registration technique of the changes of the electron work function over the surface. Dependence between the electron work function value, as well as its alteration and the physicchemical and geometric parameters of a surface has been determined. It has been shown that the diamond nanomachining technology makes it possible to obtain electro-physically uniform optical surfaces on copper and aluminum alloy with the minimal range of the distribution of the electric potential over the surface

    IR Bismuth active centers in optical fibers: Combined excitation-emission spectroscopy

    Full text link
    3D excitation-emission luminescence spectra of Bi-doped optical fibers of various compositions were measured in a wide wavelength range 450-1700 nm. Such luminescence spectra were obtained for Bi-doped pure silica and germania fibers, and for Bi-doped Al- or P-codoped silica fibers (at room and liquid nitrogen temperatures). The energy level schemes of IR bismuth active centers in pure silica and germania core fibers were derived from spectra obtained. The energy level schemes similarity of bismuth active centers in these two types of fibers was revealed.Comment: 12pages, 7 figures, 5 table

    Исследование влияния термообработки на микротвердость и износостойкость покрытий из анодного оксида алюминия, модифицированных наноалмазами

    Get PDF
    Anodizing of aluminum and its alloys is widely used in various fields of science and technology. The process of modifying porous anodic aluminum oxide with ultradispersed diamond (UDD) particles to improve the mechanical characteristics of coatings requires additional study. UDD was modified by consistent heat treatment at 40 °C and 120 °C. The results of the UDD surface modification were controlled by IR spectroscopy. The surface state analysis was carried out using the PMT-3 microhardnessmeter, the SolverPro P47 atomic-force microscope (AFM), and the experimental probe-electrometry device. One of the ways to improve the mechanical characteristics of such coatings is the use of ultradispersed diamonds with respective pretreatment of their surface. The article presents the results of a study of the influence of additives of ultradispersed diamonds with different functional surface composition in an acid electrolyte to form coatings of porous anodic alumina on the surface of AMg-2 aluminum alloy substrates by electrochemical oxidation. An increase in the microhardness and wear resistance of anodic oxide coatings formed on aluminum alloy substrates after various post-growth heat treatments is noted. It is shown that using a combined method based on doping anodic alumina in the process of synthesis with modified ultradispersed diamonds and post-growth annealing of the coatings obtained in vacuum at T = 500 °C, it is possible to obtain a composite material that is 2 times higher in hardness and 3 times higher in wear resistance compared to the initial coating. The research results can be used to create a new generation of radiation-resistant heat-removing bases, nano and micromechanical devices, elements of passive and active electronics, high-quality parts for spacecraft and satellites on modern composite materials.Приводятся результаты исследования влияния добавок ультрадисперсных алмазов (УДА) с различным функциональным составом поверхности в кислотный электролит для формирования покрытий из пористого анодного оксида алюминия на поверхности подложек из сплава алюминия АМг-2 путем электрохимического окисления. УДА модифицировались последовательной термообработкой при 40 °С и 120 °С. Результаты модификации поверхности УДА контролировались методом ИК-спектроскопии. Анализ модифицированной поверхности проводился с помощью микротвердомера типа ПМТ-3, атомно-силового микроскопа SolverPro P47 и экспериментального электрометрического прибора. Отмечается повышение микротвердости и износостойкости покрытий из анодного оксида, сформированных на подложках из алюминиевого сплава, после различных постростовых термообработок. Показано, что, используя комбинированный способ, который основан на легировании анодного оксида алюминия в процессе синтеза модифицированными УДА и постростового отжига покрытий в вакууме при Т = 500 °С, можно создать композиционный материал, обладающий в 2 раза более высокой твердостью и в 3 раза более высокой износостойкостью по сравнению с исходным покрытием. Результаты исследований могут быть использованы при создании нового поколения радиационно-стойких теплоотводящих оснований, нано- и микромеханических устройств, элементов пассивной и активной электроники, высококачественных деталей для космических аппаратов и спутников на современных композиционных материалах

    КОНТРОЛЬ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ, ОБРАБОТАННЫХ АЛМАЗНЫМ НАНОТОЧЕНИЕМ, ПО РАБОТЕ ВЫХОДА ЭЛЕКТРОНА

    Get PDF
    Dimensional machining technology is based on the use of integrated geometric parameters of machined surfaces. Technological impact of a pick results in oxidation processes and changes in physic-chemical parameters of surface. Control of only geometric parameters is insufficient to describe characteristics of machining and formation of ultra-smooth surfaces. The electron work function is therefore used. The aim of the work was to study electrophysical states of optic surfaces of non-ferrous metals and alloys in relation to geometric and physic-chemical parameters according to the distribution of the electron work function over the surface. We conducted the study on experimental metal samples made of copper and aluminum alloy, machined in accordance with the diamond nanomachining technology. The diamond nanomachining technology would be capable of ensuring the roughness of non-ferrous metals and alloys machined at the level of Ra ≤ 0,005 µm. Modernized Kelvin probe was used as the registration technique of the changes of the electron work function over the surface. Dependence between the electron work function value, as well as its alteration and the physicchemical and geometric parameters of a surface has been determined. It has been shown that the diamond nanomachining technology makes it possible to obtain electro-physically uniform optical surfaces on copper and aluminum alloy with the minimal range of the distribution of the electric potential over the surface. Технология размерной обработки резанием базируется на использовании интегральных геометрических параметров поверхности твердого тела. Технологическое воздействие резца приводит к процессам окисления и изменению физико-химических параметров поверхности. Для описания характеристик обработки и формирования сверхгладких поверхностей контроль геометрических параметров оказывается недостаточным. Поэтому используется параметр работа выхода электрона. Целью работы являлось исследование электрофизического состояния оптических поверхностей цветных металлов и сплавов в совокупности с геометрическими и физико-химическими параметрами по распределению работы выхода электрона поверхности. Исследование проводилось на экспериментальных образцах из меди и алюминиевого сплава, обработанных по технологии алмазного наноточения. Технология алмазного наноточения позволяет обеспечить шероховатость обработки цветных металлов и сплавов на уровне Ra ≤ 0,005 мкм. В качестве метода регистрации изменений по поверхности работы выхода электрона использовался модернизированный зонд Кельвина. Определена зависимость величины работы выхода электрона и ее изменение от физико-химических и геометрических параметров поверхности. Показано, что технология алмазного наноточения позволяет получать элетрофизически однородные оптические поверхности на меди и алюминиевом сплаве с минимальным разбросом распределения по поверхности электропотенциала.

    Совершенствование технологии изготовления и контроля качества зеркал-отражателей из алюминиевого сплава

    Get PDF
    At present, the technology of diamond blade whetting with nano-sized roughness is widely used at the manufaсturing of metal-optical products, first of all, mirror-reflectors for “transportation” of powerful laser energy flows. Optimum material for mirror-reflectors is an aluminum alloy AMg2, which surface purity, is affected by the quality of preliminary mechanical heat treatment during superfinishing treatment by diamond whetting.Preliminary machining of the surface with a carbide cutter and finishing with a diamond cutter (with a radius of curvature of the blade less than 0.05 μm) were performed on a precision lathe of the MK 6501 model with a vertical spindle position on an air bearing. Thermal treatment was carried out in the laboratory electric furnace SNOL 58/350. Various modes of preliminary heat treatment, machining with a carbide cutter and finishing with a diamond cutter of substrates (20×20×7 mm3) were tested. The surface state analysis was carried out using the PMT-3 microhardness tester, the SolverPro P47 atomic-force microscope (AFM), and the experimental probe-electrometry device. The control of the electrophysical parameters of the surface was carried out by recording the distribution of the electron work function (RWF) by the contact potential difference with the processing by the microprocessor measuring transducer of electrostatic potentials. The recorded changes in the RWF characterize the physic-chemical and mechanical parameters of the surface of mirrors and indicate the presence of a different type and nature of defects.Modified preliminary mechanical-thermal treatment allowed to improve the cleanliness of surface treatment of substrates. Finishing nanoscale diamond blade processing, including the complete removal of the surface layer that was disturbed by previous operations, bring to the greatest possible improvement in the quality of the surface in terms of the uniformity of the distribution of its electrophysical properties. As a result, according to the values and changes of the RWF, achievement of the specified performance characteristics of the product surface was monitored in order to optimize the technological processing modes in accordance with the functional designations of the devices.The methods for increasing the efficiency of nanoscale diamond blade processing and performing researches of the electrophysical properties of the surface to control defects in the manufacture of metal reflector mirrors with high reflectivity and radiation strength for operation under extreme conditions.В настоящее время технология алмазного лезвийного точения с наноразмерной шероховатостью широко используется при изготовлении металлооптических изделий, прежде всего зеркал-отражателей для «транcпортировки» мощных лазерных энергетических потоков. Оптимальным материалом для зеркал-отражателей представляется алюминиевый сплав АМг2, на чистоту поверхности которого при суперфинишной обработке алмазным точением влияет качество предварительной механо-термической обработки. Целью работы являлось улучшение оптических характеристик зеркал-отражателей с высокой лучевой прочностью путем совершенствования технологии изготовления и контроля качества.Предварительная механическая обработка поверхности твердосплавным резцом и финишная обработка алмазным резцом (с радиусом закругления лезвия менее 0,05 мкм) проводились на прецизионном токарном станке модели МК 6501 с вертикальным расположением шпинделя на воздушном подшипнике. Термическая обработка осуществлялась в лабораторной электропечи марки SNOL 58/350. Были апробированы различные режимы предварительной термической обработки, обработки твердосплавным резцом и финишной обработки алмазным резцом подложек (20×20×7 мм3). Анализ состояния поверхности проводился с использованием микротвердомера ПМТ-3, атомно-силового микроскопа (АСМ) SolverPro P47 и экспериментальной установки зондовой электрометрии. Контроль электрофизических параметров поверхности осуществлялся путем регистрации распределения работы выхода электрона (РВЭ) по контактной разности потенциалов с обработкой микропроцессорным измерительным преобразователем электростатических потенциалов. Регистрируемые изменения РВЭ характеризуют физико-химические и механические параметры поверхности зеркал и указывают на наличие различного типа и природы дефектов.Модифицированная предварительная механо-термическая обработка позволила улучшить чистоту обработки поверхности подложек. Финишная наноразмерная алмазная лезвийная обработка, включающая полное удаление нарушенного предыдущими операциями поверхностного слоя материала, приводила к максимально возможному повышению качества поверхности по параметру однородности распределения ее электрофизических свойств. В результате по значениям РВЭ и их изменениям контролировалось достижение заданных эксплуатационных характеристик поверхности изделий для оптимизации технологических режимов обработки в соответствии с функциональными назначениями формируемых приборов и устройств.Разработаны методики повышения эффективности наноразмерной алмазной лезвийной обработки и проведения исследований электрофизических свойств поверхности по контролю дефектов при изготовлении металлических зеркал-отражателей с высокой отражательной способностью и лучевой прочностью для работы в экстремальных условиях

    АНАЛИЗ ДЕФЕКТОВ ПОВЕРХНОСТИ ИСХОДНЫХ ПОДЛОЖЕК АЛЮМИНИЯ И ЕГО СПЛАВОВ МЕТОДОМ СКАНИРУЮЩЕГО ЗОНДА КЕЛЬВИНА

    Get PDF
    Currently, the use of probe electrometry in non-destructive testing is constrained by the complexity of measurement results interpretation. An output signal of electrometric probe depends on a number of physical and chemical parameters of surface including chemical composition variations, stresses, dislocations, crystallographic orientation of a surface, etc. The study aims to the use of probe electrometry methods for nondestructive testing and analysis of precision metal surfaces’ defects after different treatment or processing.Control of surface defects of aluminum and its alloys was performed with a scanning Kelvin probe technique. The results of scanning were plotted in a form of contact potential difference (CPD) distribution map. Additionally, a histogram of CPD values distribution and statistical characteristics including the expectation of CPD mean value and histogram half-width were calculated either for the whole distribution or for each individual mode in a case of multimodal distribution.The spatial CPD distribution of A99 aluminum and AMG-2 alloy surfaces after electrochemical polishing and diamond finishing was studied. An additional study was held for AMG-2 surface after the formation of 30 microns thick specific nanostructured alumina oxide surface layer. Higher quality surfaces have characterized as more homogeneous distribution of the physical properties (at half-width distribution histogram). Surfaces with higher mechanical strength and overall better mechanical properties found to have lower CPD values that correspond to higher electron work function and surface energy. The presence of the second mode in the CPD distribution histogram indicates the significant proportion of defect areas on the sample surface.Analysis of visualized CPD distribution maps using defined criteria allows detecting and characterizing such defects as residual stress areas, areas with reduced microhardness, surface contamination spots, corrosion defects. This provides the possibility of rapid nondestructive testing and diagnostic of precision metal surfaces, in particular the starting substrates for sensitive elements and sensory devices manufacture. В настоящее время использование методов зондовой электрометрии в неразрушающем контроле сдерживается сложностью интерпретации результатов измерений, что связано с многофакторностью измерительного сигнала, зависящего от большого количества параметров физико-химического состояния поверхности: отклонений химического состава, механических напряжений, дислокаций, кристаллографической ориентации поверхности и др. Целью исследования являлось применение методов зондовой электрометрии для неразрушающего контроля и анализа дефектов прецизионных металлических поверхностей, полученных различными видами обработки.Методика экспериментальных исследований включала в себя построение визуализированного изображения пространственного распределения контактной разности потенциалов (КРП) по поверхности образцов методом сканирующего зонда Кельвина, построение гистограммы распределения значений КРП и определение статистических характеристик распределения, таких как математическое ожидание значений КРП и полуширина гистограммы распределения (для каждой моды при многомодальном распределении)Исследовано пространственное распределение КРП исходных подложек из алюминия А99 и сплава АМГ-2 после обработки поверхностей электрохимической полировкой и алмазным наноточением, а также после формирования на подготовленной поверхности слоя специфического наноструктурированного оксида алюминия толщиной 30 мкм. Более высоким качеством обладают поверхности, характеризующиеся меньшей полушириной гистограммы распределения. Наибольшей механической прочностью и в целом лучшими механическими свойствами при прочих равных условиях обладают поверхности с наиболее низкими значениями контактной разности потенциалов, что соответствует наибольшим значениями работы выхода электрона и поверхностной энергии. Наличие второй моды в гистограмме распределения значений контактной разности потенциалов указывает на наличие значимых по площади дефектных областей на соответствующей поверхности образца.Экспериментально показано, что анализ визуализированных изображений пространственного распределения КРП с использованием данных критериев позволяет выявлять и характеризовать такие дефекты, как места концентрации остаточных механических напряжений, участки с пониженной микротвердостью поверхности, загрязнения, коррозионные дефекты. Тем самым обеспечивается возможность оперативного неразрушающего контроля и диагностики функциональных характеристик прецизионных поверхностей металлов, в частности, исходных подложек для изготовления чувствительных элементов устройств сенсорики

    Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids

    Get PDF
    The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS), and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against different types of cells

    Повышение качества поверхности металлических зеркал-отражателей при наноразмерной алмазной лезвийной обработке

    Get PDF
    Improving the technology of diamond turning of aluminum alloys is of great importance for expanding the application areas of metal-optical products based on aluminum in aerospace technology. The aim of this work was to study the effect of surface inhomogeneities of the initial aluminum alloy substrates on their optical and mechanical characteristics and to determine ways of improving the quality of aluminum reflector mirrors manufactured using nanoscale single point diamond turning. The investigated reflector mirrors were made from AMg2 aluminum alloy. The optical surface treatment was carried out on a precision turning lathe with an air bearing spindle using a special diamond cutter with a blade radius of ≤ 0.05 μm. The analysis of the surface structure of the AMg2 alloy substrates was carried out by scanning electron microscopy / electron microprobe. The quality control of the surface treatment of the manufactured reflector mirrors was carried out by atomic force microscopy. The reflectivity and radiation resistance of these samples were also investigated. It is shown that an important problem in the manufacture of optical elements from aluminum alloys is the inhomogeneity of the structure of the initial material, associated with the presence of intermetallic inclusions. Heat treatment of the AMg2 alloy substrates at T ≥ 380 °C makes it possible to improve the quality of surface and the radiation resistance of aluminum mirrors both by removing mechanical stresses and by partially homogenizing the starting material. The optimum is heat treatment at the maximum allowable temperature for the AMg2 alloy T = 540 ºС, as a result of which there is a complete disappearance of intermetallic inclusions with an increased magnesium content. The use of high-temperature heat treatment of AMg2 alloy substrates allows, in comparison with unannealed samples, to reduce the surface roughness from 1.5 to 0.55 nm, to increase the reflectivity of mirrors at a wavelength of 1064 nm from 0.89 to 0.92, and to increase the laser damage threshold from 3.5 to 5 J / cm2

    Повышение качества поверхности металлических зеркал-отражателей при наноразмерной алмазной лезвийной обработке

    Get PDF
    Improving the technology of diamond turning of aluminum alloys is of great importance for expanding the application areas of metal-optical products based on aluminum in aerospace technology. The aim of this work was to study the effect of surface inhomogeneities of the initial aluminum alloy substrates on their optical and mechanical characteristics and to determine ways of improving the quality of aluminum reflector mirrors manufactured using nanoscale single point diamond turning. The investigated reflector mirrors were made from AMg2 aluminum alloy. The optical surface treatment was carried out on a precision turning lathe with an air bearing spindle using a special diamond cutter with a blade radius of ≤ 0.05 μm. The analysis of the surface structure of the AMg2 alloy substrates was carried out by scanning electron microscopy / electron microprobe. The quality control of the surface treatment of the manufactured reflector mirrors was carried out by atomic force microscopy. The reflectivity and radiation resistance of these samples were also investigated.It is shown that an important problem in the manufacture of optical elements from aluminum alloys is the inhomogeneity of the structure of the initial material, associated with the presence of intermetallic inclusions. Heat treatment of the AMg2 alloy substrates at T ≥ 380 °C makes it possible to improve the quality of surface and the radiation resistance of aluminum mirrors both by removing mechanical stresses and by partially homogenizing the starting material. The optimum is heat treatment at the maximum allowable temperature for the AMg2 alloy T = 540 ºС, as a result of which there is a complete disappearance of intermetallic inclusions with an increased magnesium content. The use of high-temperature heat treatment of AMg2 alloy substrates allows, in comparison with unannealed samples, to reduce the surface roughness from 1.5 to 0.55 nm, to increase the reflectivity of mirrors at a wavelength of 1064 nm from 0.89 to 0.92, and to increase the laser damage threshold from 3.5 to 5 J / cm2.Совершенствование технологии алмазного точения алюминиевых сплавов имеет важное значение для расширения областей применения металлооптических изделий на основе алюминия в авиационно-космической технике. Целью настоящей работы являлось исследование влияния неоднородностей структуры поверхности исходных подложек из алюминиевого сплава на их оптические и механические характеристики и определение путей повышения качества алюминиевых зеркал-отражателей, изготавливаемых с использованием наноразмерной алмазной лезвийной обработки.Исследованные зеркала-отражатели изготавливались из алюминиевого сплава АМг2. Оптическая обработка поверхности производилась на прецизионном токарном станке со шпинделем на воздушном подшипнике с использованием специального алмазного резца с радиусом закругления лезвия менее 0,05 мкм. Анализ структуры поверхности подложек из сплава АМг2 проводился методами растровой электронной микроскопии/электронного микрозонда. Контроль качества обработки поверхности изготовленных зеркал-отражателей осуществлялся методом атомно-силовой микроскопии. Исследовались также отражательная способность и лучевая прочность данных образцов.Показано, что важной проблемой при изготовлении оптических элементов из алюминиевых сплавов является неоднородность структуры исходного материала, связанная с наличием интерметаллидных включений. Термообработка подложек из сплава АМг2 при Т ≥ 380 °С позволяет улучшить качество обработки поверхности и лучевую прочность алюминиевых зеркал как за счёт снятия механических напряжений, так и за счёт частичной гомогенизации исходного материала. Оптимальной является термообработка при максимально допустимой для сплава АМг2 температуре Т = 540 ºС, в результате которой происходит полное исчезновение интерметаллидных включений с повышенным содержанием магния. Применение высокотемпературной термообработки подложек позволяет, по сравнению с неотожжёнными образцами, снизить шероховатость поверхности с 1,5 до 0,55 нм, повысить отражательную способность зеркал на длине волны 1064 нм с 0,89 до 0,92 и повысить лучевую прочность с 3,5 до 5 Дж/см2

    Multi-octave frequency comb generation by X⁽³⁾-nonlinear optical processes in CVD diamond at low temperatures

    No full text
    We study stimulated Raman scattering (SRS) and Raman four-wave mixing (RFWM) processes in chemical vapour deposition (CVD) diamond crystals. The strong interaction of picosecond laser pulses at 1.064 and 0.532 ?m wavelength with the dominant Raman-active F₂g mode results in a more than two-octave-spanning frequency comb, ranging from the UV to the NIR spectral region. In addition to spectroscopic analysis of the X⁽³⁾- nonlinear emission at room temperature, comparative measurements have been carried out at cryogenic temperature of 10 K. The Raman shift and the Raman gain are found to change only weakly. Moreover, the potential of SRS frequency comb generation in CVD diamond for ultra-short pulse synthesis is discussed.9 page(s
    corecore