20 research outputs found

    Competing interactions in two dimensional Coulomb systems: Surface charge heterogeneities in co-assembled cationic-anionic incompatible mixtures

    Full text link
    A binary mixture of oppositely charged components confined to a plane such as cationic and anionic lipid bilayers may exhibit local segregation. The relative strength of the net short range interactions, which favors macroscopic segregation, and the long range electrostatic interactions, which favors mixing, determines the length scale of the finite size or microphase segregation. The free energy of the system can be examined analytically in two separate regimes, when considering small density fluctuations at high temperatures, and when considering the periodic ordering of the system at low temperatures (F. J. Solis and M. Olvera de la Cruz, J. Chem. Phys. 122, 054905 (2000)). A simple Molecular Dynamics simulation of oppositely charged monomers, interacting with a short range Lennard Jones potential and confined to a two dimensional plane, is examined at different strengths of short and long range interactions. The system exhibits well-defined domains that can be characterized by their periodic length-scale as well as the orientational ordering of their interfaces. By adding salt, the ordering of the domains disappears and the mixture macroscopically phase segregates in agreement with analytical predictions.Comment: 8 pages, 5 figures, accepted for publication in J. Chem. Phys, Figure 1 include

    Charged Particles on Surfaces: Coexistence of Dilute Phases and Periodic Structures on Membranes

    Full text link
    We consider a mixture of one neutral and two oppositely charged types of molecules confined to a surface. Using analytical techniques and molecular dynamics simulations, we construct the phase diagram of the system and exhibit the coexistence between a patterned solid phase and a charge-dilute phase. The patterns in the solid phase arise from competition between short-range immiscibility and long-range electrostatic attractions between the charged species. The coexistence between phases leads to observations of stable patterned domains immersed in a neutral matrix background.Comment: 5 pages, 3 figure

    Curvature-driven Molecular Demixing in the Budding and Breakup of Mixed Component Worm-like Miscelles

    Get PDF
    Amphiphilic block copolymers of suitable proportions can self-assemble into surprisingly long and stable worm-like micelles, but the intrinsic polydispersity of polymers as well as polymer blending efforts and the increasing use of degradable chains all raise basic questions of curvature–composition coupling and morphological stability of these high curvature assemblies. Molecular simulations here of polyethylene glycol (PEG) based systems show that a systematic increase in the hydrated PEG fraction, in both monodisperse and binary blends, induces budding and breakup into spherical and novel ‘dumbbell’ micelles—as seen in electron microscopy images of degradable worm-like micelles. Core dimension, d, in our large-scale, long-time dissipative particle dynamics (DPD) simulations is shown to scale with chain-length, N, as predicted theoretically by the strong segregation limit (d ≈ N2/3), but morphological transitions of binary mixtures are only crudely predicted by simple mixture rules. Here we show that for weakly demixing diblock copolymers, the coupling between local interfacial concentration and mean curvature can be described with a simple linear relationship. The computational methods developed here for PEG-based assemblies should be useful for many high curvature nanosystems

    Characterisation of the hydrophobic collapse of polystyrene in water using free energy techniques

    No full text
    <p>We characterise the hydrophobic collapse of single polystyrene chains in water using molecular dynamics simulations. Specifically, we calculate the potential of mean force for the collapse of a single polystyrene chain in water using metadynamics, comparing the results between all atomistic with coarse-grained (CG) molecular simulation. We next explore the scaling behaviour of the collapsed globular shape at the minimum energy configuration, characterised by the radius of gyration, as a function of chain length. The exponent is close to one third, consistent with that predicted for a polymer chain in bad solvent. We also explore the scaling behaviour of the solvent accessible surface area (SASA) as a function of chain length, finding a similar exponent for both all atomistic and CG simulations. Furthermore, calculation of the local water density as a function of chain length near the minimum energy configuration suggests that intermediate chain lengths are more likely to form dewetted states, as compared to shorter or longer chain lengths.</p

    Molecular Simulation of the Concentration-Dependent Interaction of Hydrophobic Drugs with Model Cellular Membranes

    No full text
    We report here the interactions between a hydrophobic drug and a model cellular membrane at the molecular level using all-atom molecular dynamics simulations of paclitaxel, a hydrophobic cancer drug. The calculated free energy of a single drug across the bilayer interface displays a minimum in the outer hydrophobic zone of the membrane. The transfer free energy shows excellent agreement with reported experimental data. In two sets of long-time simulations of high concentrations of drug in the membrane (12 and 11 mol %), the drugs display substantial clustering and rotation with significant directional preference in their diffusion. The main taxane ring partitions in the outer hydrophobic zone, while the three phenyl rings prefer to be closer to the hydrophobic core of the membrane. The clustering of the drug molecules, order parameters of the lipid tails, and water penetration suggest that the fluidity and permeability of the membrane are affected by the concentration of drugs that it contains. Furthermore, at the high-concentration limit, the free energy minimum shifts closer to the hydrophobic core and the central barrier to cross the membrane decreases. Moreover, the transfer free energy change substantially increases, suggesting that increasing concentration facilitates drug partitioning into the membrane

    Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes

    No full text
    We report here on long-time all-atomistic molecular dynamics simulations of functional supramolecular nanotubes composed by the self-assembly of peptide-drug amphiphiles (DAs). These DAs have been shown to possess an inherently high drug loading of the hydrophobic anticancer drug camptothecin. We probe the self-assembly mechanism from random with ∼0.4 μs molecular dynamics simulations. Furthermore, we also computationally characterize the interfacial structure, directionality of π–π stacking, and water dynamics within several peptide-drug nanotubes with diameters consistent with the reported experimental nanotube diameter. Insight gained should inform the future design of these novel anticancer drug delivery systems

    Molecular Dynamics Simulations of Polyelectrolyte Complexes

    No full text
    Polyelectrolyte complexes (PECs) are currently of great interest due to their applications toward developing new adaptive materials and their relevance in membraneless organelles. These complexes emerge during phase separation when oppositely charged polymers are mixed in aqueous media. Peptide-based PECs are particularly useful toward developing new drug delivery methods due to their inherent biocompatibility. The underlying peptide sequence can be tuned to optimize specific material properties of the complex, such as interfacial tension and viscosity. Given their applicability, it would be advantageous to understand the underlying sequence-dependent phase behavior of oppositely charged peptides. Here, we report microsecond molecular dynamic simulations to characterize the effect of hydrophobicity on the sequence-dependent peptide conformation for model polypeptide sequences that were previously reported by Tabandeh et al. These sequences are designed with alternating chirality of the peptide backbone. We present microsecond simulations of six oppositely charged peptide pairs, characterizing the sequence-dependent effect on peptide size, degree of hydrogen bonding, secondary structure, and conformation. This analysis recapitulates sensible trends in peptide conformation and degree of hydrogen bonding, consistent with experimentally reported results. Ramachandran plots reveal that backbone conformation at the single amino acid level is highly influenced by the neighboring sequence in the chain. These results give insight into how subtle changes in hydrophobic side chain size and chirality influence the strength of hydrogen bonding between the chains and, ultimately, the secondary structure. Furthermore, principal component analysis reveals that the minimum energy structures may be subtly modulated by the underlying sequence

    π–π Stacking Mediated Chirality in Functional Supramolecular Filaments

    No full text
    While a great diversity of peptide-based supramolecular filaments have been reported, the impact of an auxiliary segment on the chiral assembly of peptides remains poorly understood. Herein we report on the formation of chiral filaments by the self-assembly of a peptide-drug conjugate containing an aromatic drug camptothecin (CPT) in a computational study. We find that the chirality of the filament is mediated by the π–π stacking between CPTs, not only by the well-expected intermolecular hydrogen bonding between peptide segments. Our simulations show that π–π stacking of CPTs governs the early stages of the self-assembly process, while a hydrogen bonding network starts at a relatively later stage to contribute to the eventual morphology of the filament. Our results also show the possible presence of water within the core of the CPT filament. These results provide very useful guiding principles for the rational design of supramolecular assemblies of peptide conjugates with aromatic segments
    corecore