718 research outputs found
Multidimensional relationships of herbicides with insect-crop food webs
Controlling weeds is critical for improving the yield and quality of crops. Herbicides are the most commonly applied pesticides in agro-ecosystems. Herbicides affect insects directly as contact damage and indirectly by influencing food supplies. The innate susceptibility, life stages, and mode of feeding of insects can affect the herbicide–insect interaction. Interaction of herbicides with insect pest and beneficial insects is mainly indirect and absence of weeds either can reduce the insect population or causes switching of host plant and hence can also increase the population. The direct effect of herbicides depends on carrier or surfactant used. Presence of herbicides also provides surfactant to insecticides and increases impact of insecticides. At present, most reports on impact of herbicides indicate alterations in insect survival or egg production due to increase or decrease in host plant population as an indirect affect, only a handful studies reported a direct topical effect of these herbicides on egg, larvae/nymphs and adults of various insects. Further exploration of this interaction seems intriguing. Use of bio-herbicides, cultural control methods, and judicious use of herbicides could offer ecologically sustainable approaches to reduce impact of herbicides on insects
A review of interactions between insect biological control agents and semiochemicals
Biological control agents and semiochemicals have become essential parts of the integrated pest management of insect pests over recent years, as the incorporation of semiochemicals with natural enemies and entomopathogenic microbials has gained significance. The potential of insect pheromones to attract natural enemies has mainly been established under laboratory conditions, while semiochemicals from plants have been used to attract and retain natural enemies in field conditions using strategies such as trap crops and the push–pull mechanism. The best-known semiochemicals are those used for parasitoids–insect pest–plant host systems. Semiochemicals can also aid in the successful dispersal of entomopathogenic microbials. The use of semiochemicals to disseminate microbial pathogens is still at the initial stage, especially for bacterial and viral entomopathogens. Future studies should focus on the integration of semiochemicals into management strategies for insects, for which several semiochemical compounds have already been studied. More effective formulations of microbial agents, such as granular formulations of entomopathogenic fungi (EPFs), along with bio-degradable trap materials, could improve this strategy. Furthermore, more studies to evaluate species-specific tactics may be needed, especially where more than one key pest is present
Are menstrual knowledge outcome scores similar among rural and urban girls?
Background: Adolescent girls constitute a vulnerable group particularly in India where menstruation is still regarded as something dirty and messy. The cultural and social influences appear to be hurdle for advancement of knowledge of the subject. This results in adverse health outcomes in these adolescent girls. Awareness about menstruation and hygienic practices followed during menstruation are of immense importance as it has a health impact in terms of increased vulnerability to reproductive tract infection.Aim: a) To assess and compare the knowledge regarding menstruation in rural and urban adolescent girls. b) To associate the findings with the selected socio-demographic variables.Subjects and methods: A community based, cross sectional study was undertaken among 715 adolescent schools going girls in the field practice area of the RHTC and UHTC of Department of Community Medicine, District Bareilly. A pre-designed, pretested structured questionnaire was used in the study regarding knowledge and perception of the school going girls regarding menstruation.Results: Majority of the girls had first heard of menstruation and acquired knowledge related to it before attaining menarche (72.45%). The major source of information was from their mothers and sisters (60.6%). Maximum number of girls was not aware of the source of bleeding (53.7%). Statistically significant difference with knowledge scores was seen in girls of higher standards, maternal literacy and father’s occupation.Conclusion: Several factors are known to influence menstrual behaviour, the most significant being maternal literacy and father’s occupation. Imparting knowledge about menstruation and safe practices during menstruation is necessary to mitigate the suffering of adolescent girls. Therefore promoting positive attitudes towards management of menstruation and related problems among the adolescent girls is the need of the hour.Keywords: Menstruation, Knowledge, Perceptio
Impurity Effects on the A_1-A_2 Splitting of Superfluid 3He in Aerogel
When liquid 3He is impregnated into silica aerogel a solid-like layer of 3He
atoms coats the silica structure. The surface 3He is in fast exchange with the
liquid on NMR timescales. The exchange coupling of liquid 3He quasiparticles
with the localized 3He spins modifies the scattering of 3He quasiparticles by
the aerogel structure. In a magnetic field the polarization of the solid spins
gives rise to a splitting of the scattering cross-section of for `up' vs.
`down' spin quasiparticles, relative to the polarization of the solid 3He. We
discuss this effect, as well as the effects of non-magnetic scattering, in the
context of a possible splitting of the superfluid transition for
vs. Cooper pairs for superfluid 3He
in aerogel, analogous to the A_1-A_2 splitting in bulk 3He. Comparison with the
existing measurements of T_c for B< 5 kG, which show no evidence of an A_1-A_2
splitting, suggests a liquid-solid exchange coupling of order J = 0.1 mK.
Measurements at higher fields, B > 20 kG, should saturate the polarization of
the solid 3He and reveal the A_1-A_2 splitting.Comment: 7 pages, 3 figure
Magnetism in Dense Quark Matter
We review the mechanisms via which an external magnetic field can affect the
ground state of cold and dense quark matter. In the absence of a magnetic
field, at asymptotically high densities, cold quark matter is in the
Color-Flavor-Locked (CFL) phase of color superconductivity characterized by
three scales: the superconducting gap, the gluon Meissner mass, and the
baryonic chemical potential. When an applied magnetic field becomes comparable
with each of these scales, new phases and/or condensates may emerge. They
include the magnetic CFL (MCFL) phase that becomes relevant for fields of the
order of the gap scale; the paramagnetic CFL, important when the field is of
the order of the Meissner mass, and a spin-one condensate associated to the
magnetic moment of the Cooper pairs, significant at fields of the order of the
chemical potential. We discuss the equation of state (EoS) of MCFL matter for a
large range of field values and consider possible applications of the magnetic
effects on dense quark matter to the astrophysics of compact stars.Comment: To appear in Lect. Notes Phys. "Strongly interacting matter in
magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A.
Schmitt, H.-U. Ye
- …