7 research outputs found

    Machine Learning for Optical Motion Capture-driven Musculoskeletal Modelling from Inertial Motion Capture Data

    Full text link
    Marker-based Optical Motion Capture (OMC) systems and associated musculoskeletal (MSK) modelling predictions offer non-invasively obtainable insights into in vivo joint and muscle loading, aiding clinical decision-making. However, an OMC system is lab-based, expensive, and requires a line of sight. Inertial Motion Capture (IMC) systems are widely-used alternatives, which are portable, user-friendly, and relatively low-cost, although with lesser accuracy. Irrespective of the choice of motion capture technique, one needs to use an MSK model to obtain the kinematic and kinetic outputs, which is a computationally expensive tool increasingly well approximated by machine learning (ML) methods. Here, we present an ML approach to map experimentally recorded IMC data to the human upper-extremity MSK model outputs computed from ('gold standard') OMC input data. Essentially, we aim to predict higher-quality MSK outputs from the much easier-to-obtain IMC data. We use OMC and IMC data simultaneously collected for the same subjects to train different ML architectures that predict OMC-driven MSK outputs from IMC measurements. In particular, we employed various neural network (NN) architectures, such as Feed-Forward Neural Networks (FFNNs) and Recurrent Neural Networks (RNNs) (vanilla, Long Short-Term Memory, and Gated Recurrent Unit) and searched for the best-fit model through an exhaustive search in the hyperparameters space in both subject-exposed (SE) & subject-naive (SN) settings. We observed a comparable performance for both FFNN & RNN models, which have a high degree of agreement (ravg, SE, FFNN = 0.90+/-0.19, ravg, SE, RNN = 0.89+/-0.17, ravg, SN, FFNN = 0.84+/-0.23, & ravg, SN, RNN = 0.78+/-0.23) with the desired OMC-driven MSK estimates for held-out test data. Mapping IMC inputs to OMC-driven MSK outputs using ML models could be instrumental in transitioning MSK modelling from 'lab to field'.Comment: 23 pages, 12 figures, 5 table

    Machine Learning for Musculoskeletal Modeling of Upper Extremity

    No full text
    We propose a novel machine learning (ML)-driven methodology to estimate biomechanical variables of interest traditionally obtained from upper-extremity musculoskeletal (MSK) modeling. MSK models facilitate personalized modeling, perform "what-if" analyses, and potentially enhance clinical decision-making. In certain settings, MSK models are driven by inertial motion capture (IMC) data. IMC systems are portable, user-friendly, and relatively affordable as well as provide additional biomechanical information. However, MSK models can be computationally expensive, often require extensive data, and can be prohibitively slow in making real-time predictions. Our ML method- involving a rigorous hyperparameters search-predicts kinematic and kinetic biomechanical information associated with human upper-extremity movements solely using IMC input data, thereby bypassing MSK models. The scaled cadaver-based MSK model was based on the Dutch Shoulder Model and the spine model implemented in the AnyBody Managed Model Repository. We employ neural networks (NNs), which are trained on IMC data obtained from five nondisabled subjects in subject- exposed (SE) settings (at least a trial from all subjects is used in training) and subject- naive (SN) settings (no information from test subjects is used in training). We compare the predictions of our ML model with that of an MSK model and find an excellent agreement in SE settings (average Pearson's r = 0.96, normalized RMSE (NRMSE) = 0.23) and strong correspondence in SN settings (average r = 0.89, NRMSE = 0.45). The linear model performed poorly for SN settings, which motivated a more complex ML model. Our findings suggest that an ML-based approach is highly viable for estimating upper-extremity biomechanical information solely from IMC data

    Management of coronary disease in patients with advanced kidney disease

    No full text
    BACKGROUND Clinical trials that have assessed the effect of revascularization in patients with stable coronary disease have routinely excluded those with advanced chronic kidney disease. METHODS We randomly assigned 777 patients with advanced kidney disease and moderate or severe ischemia on stress testing to be treated with an initial invasive strategy consisting of coronary angiography and revascularization (if appropriate) added to medical therapy or an initial conservative strategy consisting of medical therapy alone and angiography reserved for those in whom medical therapy had failed. The primary outcome was a composite of death or nonfatal myocardial infarction. A key secondary outcome was a composite of death, nonfatal myocardial infarction, or hospitalization for unstable angina, heart failure, or resuscitated cardiac arrest. RESULTS At a median follow-up of 2.2 years, a primary outcome event had occurred in 123 patients in the invasive-strategy group and in 129 patients in the conservative-strategy group (estimated 3-year event rate, 36.4% vs. 36.7%; adjusted hazard ratio, 1.01; 95% confidence interval [CI], 0.79 to 1.29; P=0.95). Results for the key secondary outcome were similar (38.5% vs. 39.7%; hazard ratio, 1.01; 95% CI, 0.79 to 1.29). The invasive strategy was associated with a higher incidence of stroke than the conservative strategy (hazard ratio, 3.76; 95% CI, 1.52 to 9.32; P=0.004) and with a higher incidence of death or initiation of dialysis (hazard ratio, 1.48; 95% CI, 1.04 to 2.11; P=0.03). CONCLUSIONS Among patients with stable coronary disease, advanced chronic kidney disease, and moderate or severe ischemia, we did not find evidence that an initial invasive strategy, as compared with an initial conservative strategy, reduced the risk of death or nonfatal myocardial infarction

    Health status after invasive or conservative care in coronary and advanced kidney disease

    No full text
    BACKGROUND In the ISCHEMIA-CKD trial, the primary analysis showed no significant difference in the risk of death or myocardial infarction with initial angiography and revascularization plus guideline-based medical therapy (invasive strategy) as compared with guideline-based medical therapy alone (conservative strategy) in participants with stable ischemic heart disease, moderate or severe ischemia, and advanced chronic kidney disease (an estimated glomerular filtration rate of <30 ml per minute per 1.73 m2 or receipt of dialysis). A secondary objective of the trial was to assess angina-related health status. METHODS We assessed health status with the Seattle Angina Questionnaire (SAQ) before randomization and at 1.5, 3, and 6 months and every 6 months thereafter. The primary outcome of this analysis was the SAQ Summary score (ranging from 0 to 100, with higher scores indicating less frequent angina and better function and quality of life). Mixed-effects cumulative probability models within a Bayesian framework were used to estimate the treatment effect with the invasive strategy. RESULTS Health status was assessed in 705 of 777 participants. Nearly half the participants (49%) had had no angina during the month before randomization. At 3 months, the estimated mean difference between the invasive-strategy group and the conservative-strategy group in the SAQ Summary score was 2.1 points (95% credible interval, 120.4 to 4.6), a result that favored the invasive strategy. The mean difference in score at 3 months was largest among participants with daily or weekly angina at baseline (10.1 points; 95% credible interval, 0.0 to 19.9), smaller among those with monthly angina at baseline (2.2 points; 95% credible interval, 122.0 to 6.2), and nearly absent among those without angina at baseline (0.6 points; 95% credible interval, 121.9 to 3.3). By 6 months, the between-group difference in the overall trial population was attenuated (0.5 points; 95% credible interval, 122.2 to 3.4). CONCLUSIONS Participants with stable ischemic heart disease, moderate or severe ischemia, and advanced chronic kidney disease did not have substantial or sustained benefits with regard to angina-related health status with an initially invasive strategy as compared with a conservative strategy
    corecore