3,399 research outputs found
Studies On Nickel-Titanium Shape Memory Alloy Thin Films For Micro-actuator Applications
Shape memory alloys (SMAs) have been recognized as one of the most promising materials for MEMS micro-actuator applications. Among the available materials, Nickel/Titanium (NiTi) SMAs are more popular because, they exhibit unique properties in shape memory effect (SME) and pseudo-elasticity (PE). In addition NiTi SMA possesses high corrosion resistance, excellent mechanical properties and is also bio¬compatible. NiTi thin-film SMAs have been considered as the most significant material in the field of MEMS applications, which can be patterned with standard lithographic techniques to scale-up for batch production. However, the lack of proper understanding of basic materials’ properties and inability to reproduce, has limited the usage of this material in MEMS devices. The properties of NiTi SMA thin-films are very much sensitive to the elemental composition and structure, which are in turn decided by the deposition process and process parameters.
A brief history of NiTi shape memory alloys (SMAs), basic information, transformation characteristics, crystal structure, phase diagram and literature reviewed for the current motivation have been presented in the second chapter
In the third chapter, a brief summary about the deposition techniques relevant to NiTi film deposition has been presented. The deposition of NiTi films by a number of deposition techniques such as thermal evaporation, co-evaporation, molecular beam Epitaxy, pulsed laser deposition, flash evaporation, electron beam deposition, filtered arc deposition, ion beam assisted sputter deposition, vacuum plasma spraying, ion beam sputtering, ECR sputtering and magnetron sputtering techniques have been discussed. In order to achieve a precise control over film thickness and composition of the films on to the substrates, the selection of magnetron sputtering has been highlighted. In the present thesis, two prolonged approaches such as DC magnetron sputtering of an alloy target and co-sputtering of elemental targets have been presented. Various characterization techniques used for film thickness, composition, structure, micro¬structure, electrical, phase transformation and mechanical properties have also been briefly presented in the same chapter.
In the fourth chapter, description of Conventional Alloy Target Sputtering System has been presented. DC magnetron sputtering of an alloy target with two different atomic ratios (Ni:Ti = 45:55 & 50:50) has been used for depositing the coatings. Several limitations in the reproducibility and repeatability have been observed with single alloy target sputtering, irrespective of the target composition ratio. In addition to this, incorporation of oxygen in the films during and after deposition has been observed, which has limited the extensive usage of this single alloy target system.
The limitations regarding control over composition, thickness uniformity over large area have been improved by designing and fabricating a dedicated Three Target Magnetron Co-sputtering System. The vacuum diagnosis of the system under different conditions has been carried out by using PPR-200 Residual Gas Analyzer (RGA), which have included in Appendix I. Similar to alloy target sputtering system, the thickness uniformity and required composition with deposition parameters over a size of 75 mm diameter has been achieved and the process repeatability has been established. Oxygen incorporation in the films during deposition has been minimized by pre-sputtering of Ti target for known duration of time, which has resulted in significant reduction in partial pressure of oxygen in the chamber. The oxide layer formation on film surface has been eliminated by in-situ capping layer (TiN) deposition.
In the fifth chapter, the influence of process parameters such as sample locations, substrate to target distance (STD), working pressure (WP), gas flow rates, deposition rates, deposition and annealing temperature, Target power, on the film thickness and composition uniformity have been presented for alloy target sputtering system as well as for the co-sputtering system. The film thicknesses have been measured with stylus method. Film compositions have been determined by energy dispersive X-ray spectroscopy (EDS), Secondary ion mass spectrometry (SIMS), Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS). The working pressure of 1.5 X 10-3 mbar, STD of 90 mm and target power of 100 W have been found to produce coatings having uniform thickness and composition over the given area for alloy target sputtering system. Similar investigations have been carried out for co-sputtered NiTiCu films. The working pressure of 1.5x 10-3 mbar, at a STD of 90 mm, at a rotational speed of 15 rpm and at target powers of 600, 50 and 12 W for Ti, Ni and Cu respectively, have resulted in the thickness and required composition uniformity over a size of 75 mm diameter substrate and the process repeatability has been established.
In the Sixth chapter, the influence of process parameters on film structure and micro-structure on the NiTi/NiTiCu films deposited by a single alloy target and co¬sputtering have been studied by different analytical techniques like XRD, TEM, AFM, SEM etc. Phase transformation temperatures and kind of transformations have been investigated by DSC, Resistivity / Temperature and Stress/ Temperature studies and correlations have been established. The process parameters have been optimized for TiN deposition, which act as the capping layer to protect NiTi films from surface oxidation. The variation in mechanical behavior for the NiTi/ NiTiCu films before and after TiN capping by nano-indentation test have also presented.
XRD and TEM studies have shown that the NiTi / NiTiCu films deposited at room temperature to 400o C are amorphous. Post-annealing, at a temperature of 450O C or above resulted in the film crystallization with oxide layer formation at the film surface, which has been confirmed by XRD and XTEM studies. In the case of Ni-rich NiTi films, R-phase diffraction peaks have also been identified in addition to the Austenite / Martensite phase. XRD investigations have shown that Ti-rich NiTi and Ni-rich NiTi films have resulted in precipitate free films. In the case of Ti-rich NiTiCu and Ni-rich NiTiCu films, the variations in Ti/Ni target power has resulted in the formation of NiTi 2 and Ni3Ti precipitates along with their parent Martensite and Austenite phases. When the Cu content is increased in NiTiCu films, an increase in number of Martensite phase diffraction peaks in XRD spectrum has been observed. XTEM studies have confirmed formation of oxide layer, inter-metallic layer and interface layer at higher post annealing temperatures. SEM studies have shown that the films deposited at higher gas flow rate results in the columnar micro-structure. In the context of NiTiCu films, the films deposited at higher Ti target power have shown more compact and tightly packed film micro-structure. AFM studies have shown increase in the average crystallite size and film roughness with post annealing temperature and duration.
TiN coating has been used as the capping layer onto NiTi / NiTiCu films. Structural and micro-structural comparison of these films before and after TiN coating has resulted the appearance of (111) TiN peak in all TiN capped films. SEM and AFM studies have shown that the film roughness have decreased after capping layer deposition.
DSC thermal cycling used to verify the film crystallization temperature has shown the appearance of exothermic peak in NiTi / NiTiCu films. DSC, Resistivity-temperature, stress-temperature response has been confirmed the transformation temperature and kind of transformations in all the films. Residual stress measurements have shown that the crystalline films exhibited lower bi-axial stress in comparison to the amorphous films. Ti-rich NiTi films have shown single phase transformations (M-A and A-M) whereas two phase transformations (M-R-A and A-R-M) have been observed in Ni-rich NiTi films. Higher deposition / annealing temperature have shown the appearance of distinct phase transformation peaks in resistivity vs. temperature studies. In the case of NiTiCu films, the decrease in film crystallization temperature with increase in the Cu content has been observed. The phase transformation temperature evaluated from second thermal cycle has shown decrease in the width of hysteresis loop with increase in the Cu content in NTC films.
Nano-indentation studies have been carried out to evaluate the micro-hardness and modulus values of TiN capped and uncapped NiTi / NiTiCu films. The modulus and hardness uniformity have been confirmed for the different location over a diameter of 75 mm. The modulus and hardness values have increased with increase in the substrate and annealing temperature. Increase in the Cu target power has resulted in the increase in the hardness and modulus values under same deposition conditions. TiN coated NiTi / NiTiCu films have shown larger modulus and hardness values than the uncapped films.
In the Seventh chapter, the fabrication process and actuation response for silicon dioxide, Aluminum and NiTi SMA coated micro-cantilevers has been discussed. Various nano-structures such as pyramids, beams and pillars by focused ion beam (FIB) micro-machining have been fabricated. High aspect ratio nano-pillars have been selected for micro-compression testing.
In summary, this thesis emphasizes on the fabrication of specific sputtering systems relevant to NiTi film deposition and process parameter optimization for desired film thickness and composition uniformity. DC magnetron sputtering of a NiTi alloy target
(50:50 and 45:55 at. %) and co-sputtering of elemental targets (Ni, Ti and Cu) have been presented. These films have been investigated for structural, micro-structural, phase transformation and mechanical properties. In-situ deposition of TiN capping layer, on to NiTi / NiTiCu films has been carried out to reduce the oxygen trapping. The fabrication process and actuation response of micro-cantilevers have been described. The etching characteristics to generate various nano-structures viz. pyramids, beams and pillars by focused ion beam (FIB) micro-machining have been investigated and mechanical testing of selected nano-structures have also been reported
Synthesizing the latest Configurational Contents of International Marketing
This study is an effort to attempt and identify the most recent configurational contents developed during 1990 - 2012. Literature of this particular duration is assessed to explore attention captured by each individual configurational content by researchers, publication outlets and in terms of their application in a particular industry. This literature synthesis 1834 research articles published in particular time frame 1990 - 2012, which yield 57 different configurational contents of international marketing with application in 32 different industries. These 57 configurational contents are categorized under 7 derived clusters. Review also focuses on attention of publication outlets in context of specialized volumes published in each research stream of international marketing. This synthesis find that international marketing has made substantial progress in context of concepts, their application. All the configurational contents and research streams successfully captured the attention of researchers and publication outlets. Keywords: International marketing, Configurational Contents, Research Stream
Detection Of Fetal Electrocardiogram from Multivariate Abdominal Recordings by using Wavelets and Neuro-Fuzzy Systems
The fetal electrocardiogram (FECG) signal reflects the electrical activity of the fetal heart. It contains information on the health status of the fetus and therefore, an early diagnosis of any cardiac defects before delivery (Specially in case of labour pain) increases the effectiveness of the appropriate treatment. In this paper we consider one signal from the thoracic and another from abdomen of the mother. The artificial neural network fuzzy inference system (ANFIS) is used for estimating the FECG component from one abdominal ECG recording and one reference thoracic maternal electrocardiogram (MECG) signal. The obtained FECG is being enhanced by using wavelet transform. Key words: ECG, MECG, FECG, Neural network , Fuzzy logic, Membership function and Wavelet transform
A Comparative Strategy Using PI & Fuzzy Controller for Optimization of Power Quality Control
This paper explores the analytical study and simulation of fuzzy logic controller and PI controller, to control the dc output voltage of shunt active power filter for harmonic reduction and power quality improvement in case of nonlinear load. Here we have exercised an effort to design and evaluate a converter to compensate the harmonics for 1-phase AC to DC bridge rectifier which is working as the main converter in unregulated mode. The work depends on the scheme where an ancillary converter is linked in shunt with the main or primary converter whose turn on and turn off time is controlled by an appropriate controller (pi/fuzzy logic) for harmonic compensation of the primary converter which is working as nonlinear load. The Model of converter is proposed on MATLAB\SIMULINK Software and the results are analyzed satisfactorily.
Influence of defect pairs in Ga-based ordered defect compounds: a hybrid density functional study
In the present paper, density functional theory (DFT) based calculations have been performed to predict the stability, electronic, and optical properties of Ga-rich ordered defect compounds (ODCs). The calculated lattice constants, bulk modulus, their pressure derivatives, and optical constants show good agreement with available experimental data. The hybrid exchange correlations functional have been considered to calculate ground state total energy and energy band gap of the material. The calculated formation energy of ODCs comes smaller than pure CuGaSe2 (CGS). Our calculated optical absorption coefficients indicate that the energy band gap of ODCs can be tuned by changing the number of donor-acceptor defect pairs (2V(cu)(-), + Ga-cu(2+)). The band offset has been calculated to understand the reason of band gap alteration while the number of defect pair changes. Our results may be helpful for other experiments to further improve the performance of ODCs
Correlation between WOMAC score and hyalrunoic acid levels in knee osteoarthritis
Background: Osteoarthritis, a whole organ disease is diagnosed on clinical and radiological features, but plain radiographs show changes only in moderate to advanced stage of disease. Biochemical marker such as Hyaluronic Acid (HA) is used as a diagnostic tool in early stages. Hyaluronic acid level estimation has limited use in developing world due to cost and availability.Methods: A case-control study was done to correlate role of WOMAC score and serum Hyaluronic acid levels in knee osteoarthritis. All subjects were asked to fill the WOMAC questionnaire and were subjected to knee radiography. Blood samples of all subjects were tested for serum levels of Hyaluronic acid by Enzyme Linked Immuno-Sorbent Assay (ELISA). The assessment of severity was done by K-L grading of the radiographs.Results: The mean age in case group was 51.28 ± 7.93 years and in control group was 46.08 ± 4.81 years (P 60 is independently associated with the outcome.Conclusion: WOMAC scores are significantly associated with knee osteoarthritis and can play a crucial role in identification, gradation and management of patients with knee osteoarthritis and can be used singly along with clinical features in situations where treatment cost and assessment of serum HA levels is of concern.
Investigating the seasonal variability in source contribution to PM(2.5)and PM(10)using different receptor models during 2013-2016 in Delhi, India
The present work deals with the seasonal variations in the contribution of sources to PM(2.5)and PM(10)in Delhi, India. Samples of PM(2.5)and PM(10)were collected from January 2013 to December 2016 at an urban site of Delhi, India, and analyzed to evaluate their chemical components [organic carbon (OC), elemental carbon (EC), water-soluble inorganic components (WSICs), and major and trace elements]. The average concentrations of PM(2.5)and PM(10)were 131 +/- 79 mu g m(-3)and 238 +/- 106 mu g m(-3), respectively during the entire sampling period. The analyzed and seasonally segregated data sets of both PM(2.5)and PM(10)were used as input in the three different receptor models, i.e., principal component analysis-absolute principal component score (PCA-APCS), UNMIX, and positive matrix factorization (PMF), to achieve conjointly corroborated results. The present study deals with the implementation and comparison of results of three different multivariate receptor models (PCA-APCS, UNMIX, and PMF) on the same data sets that allowed a better understanding of the probable sources of PM(2.5)and PM(10)as well as the comportment of these sources with respect to different seasons. PCA-APCS, UNMIX, and PMF extracted similar sources but in different contributions to PM(2.5)and PM10. All the three models extracted 7 similar sources while mutually confirmed the 4 major sources over Delhi, i.e., secondary aerosols, vehicular emissions, biomass burning, and soil dust, although the contribution of these sources varies seasonally. PCA-APCS and UNMIX analysis identified a less number of sources (besides mixed type) as compared to the PMF, which may cause erroneous interpretation of seasonal implications on source contribution to the PM mass concentration
Metabolic fingerprinting of joint tissue of collagen-induced arthritis (CIA) rat
Rheumatoid arthritis (RA) is a systemic autoimmune disease whose major characteristics persistent joint inflammation
that results in joint destruction and failure of the function. Collagen-induced arthritis (CIA) rat is an
autoimmune disease model and in many ways shares features with RA. The CIA is associated with systemic
manifestations, including alterations in the metabolism. Nuclear magnetic resonance (NMR) spectroscopy-based
metabolomics has been successfully applied to the perchloric acid extract of the joint tissue of CIA rat and control
rat for the analysis of aqueous metabolites. GPC (Glycerophosphocholine), carnitine, acetate, and creatinine
were important discriminators of CIA rats as compared to control rats. Level of lactate (significance; p = 0.004),
alanine (p = 0.025), BCA (Branched-chain amino acids) (p = 0.006) and creatinine (p = 0.023) was significantly
higher in CIA rats as compared to control rats. Choline (p = 0.038) and GPC (p = 0.009) were significantly reduced
in CIA rats as compared to control rats. Choline to GPC correlation was good and negative (Pearson correlation
= -0.63) for CIA rats as well as for control rats (Pearson correlation = -0.79). All these analyses collectively
considered as metabolic fingerprinting of the joint tissue of CIA rat as compared to control rat. The metabolic
fingerprinting of joint tissue of CIA rats was different as compared to control rats. The metabolic fingerprinting
reflects inflammatory disease activity in CIA rats with synovitis, demonstrating that underlying inflammatory
process drives significant changes in metabolism that can be measured in the joint tissue. Therefore, the
outcome of this study may be helpful for understanding the mechanism of metabolic processes in RA. This may
be also helpful for the development of advanced diagnostic methods and therapy for RA
Molecular timetrees using relaxed clocks and uncertain phylogenies
A common practice in molecular systematics is to infer phylogeny and then scale it to time by using a relaxed clock method and calibrations. This sequential analysis practice ignores the effect of phylogenetic uncertainty on divergence time estimates and their confidence/credibility intervals. An alternative is to infer phylogeny and times jointly to incorporate phylogenetic errors into molecular dating. We compared the performance of these two alternatives in reconstructing evolutionary timetrees using computer-simulated and empirical datasets. We found sequential and joint analyses to produce similar divergence times and phylogenetic relationships, except for some nodes in particular cases. The joint inference performed better when the phylogeny was not well resolved, situations in which the joint inference should be preferred. However, joint inference can be infeasible for large datasets because available Bayesian methods are computationally burdensome. We present an alternative approach for joint inference that combines the bag of little bootstraps, maximum likelihood, and RelTime approaches for simultaneously inferring evolutionary relationships, divergence times, and confidence intervals, incorporating phylogeny uncertainty. The new method alleviates the high computational burden imposed by Bayesian methods while achieving a similar result
- …