9 research outputs found

    SYSTEM AND METHOD FOR MANAGING FAULTS IN A DISTRIBUTED ENVIRONMENT

    Get PDF
    The present disclosure discloses a method and a system for managing faults in a distributed environment 102. In the present disclosure, the method includes monitoring health metrics of systems 106 in the distributed environment 102. Further, the method includes detecting faults associated with the systems 106 in the distributed environment 102 by identifying abnormal patterns based on monitored data. Furthermore, the method includes reconfiguring the distributed environment 102 to maintain system resilience and performance based on fault detection. Further, the method includes determining a recovery action based on severity of faults. Furthermore, the method includes analyzing and diagnosing issues by logging and auditing the faults

    BLUE GREEN DEPLOYMENT STRATEGY FOR APPLICATIONS USING KAFKA

    Get PDF
    BLUE GREEN DEPLOYMENT STRATEGY FOR APPLICATIONS USING KAFKA Disclosed herein is a blue-green deployment strategy for consumer applications using the Kafka system. The present disclosure proposes setting producer and consumer configurations in a way that green application consumers are able to consume messages from Kafka topic, hence enabling application teams to test their changes in a green environment. To achieve this, the present disclosure provides a rebalancing of partitions technique where the number of partitions are configured either twice the number of consumers or greater than twice the number of consumers so that all consumers in a consumer group are active and are able to consume data from Kafka topic

    An Analysis of Physiological and Psychological Responses in Virtual Reality and Flat Screen Gaming

    Full text link
    Recent research has focused on the effectiveness of Virtual Reality (VR) in games as a more immersive method of interaction. However, there is a lack of robust analysis of the physiological effects between VR and flatscreen (FS) gaming. This paper introduces the first systematic comparison and analysis of emotional and physiological responses to commercially available games in VR and FS environments. To elicit these responses, we first selected four games through a pilot study of 6 participants to cover all four quadrants of the valence-arousal space. Using these games, we recorded the physiological activity, including Blood Volume Pulse and Electrodermal Activity, and self-reported emotions of 33 participants in a user study. Our data analysis revealed that VR gaming elicited more pronounced emotions, higher arousal, increased cognitive load and stress, and lower dominance than FS gaming. The Virtual Reality and Flat Screen (VRFS) dataset, containing over 15 hours of multimodal data comparing FS and VR gaming across different games, is also made publicly available for research purposes. Our analysis provides valuable insights for further investigations into the physiological and emotional effects of VR and FS gaming.Comment: This work has been submitted to the IEEE Transactions on Affective Computing for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    The rare case of optic nerve cavernoma: A case report depicting the diagnostic challenge

    No full text
    The manuscript describes a case of Cavernous Malformation in the optic pathway which is extremely rare, accounting for less than 1% of central nervous system cavernomas. This case report highlights a patient initially diagnosed with a glioma, but subsequent MRI changes and extensive analysis ruled in favor of a hemorrhagic optic neuropathy caused by an optic nerve cavernoma. The patient experienced temporary vision loss but fully regained her vision within a week. Based on clinical, biochemical, and radiological findings, it was confirmed as a rare case of optic nerve cavernoma, and the patient was managed expectantly due to her complete recovery of vision. Follow-up imaging after 1 year indicated a stable lesion with evolving characteristics consistent with a cavernoma. This study provides an informative review of the condition and highlights the key radiologic features of this disease

    Genomic Landscape Highlights Molecular Mechanisms Involved in Silicate Solubilization, Stress Tolerance, and Potential Growth-Promoting Activity of Bacterium Enterobacter sp. LR6

    No full text
    Silicon (Si) is gaining widespread attention due to its prophylactic activity to protect plants under stress conditions. Despite Si’s abundance in the earth’s crust, most soils do not have enough soluble Si for plants to absorb. In the present study, a silicate-solubilizing bacterium, Enterobacter sp. LR6, was isolated from the rhizospheric soil of rice and subsequently characterized through whole-genome sequencing. The size of the LR6 genome is 5.2 Mb with a GC content of 54.9% and 5182 protein-coding genes. In taxogenomic terms, it is similar to E. hormaechei subsp. xiangfangensis based on average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH). LR6 genomic data provided insight into potential genes involved in stress response, secondary metabolite production, and growth promotion. The LR6 genome contains two aquaporins, of which the aquaglyceroporin (GlpF) is responsible for the uptake of metalloids including arsenic (As) and antimony (Sb). The yeast survivability assay confirmed the metalloid transport activity of GlpF. As a biofertilizer, LR6 isolate has a great deal of tolerance to high temperatures (45 °C), salinity (7%), and acidic environments (pH 9). Most importantly, the present study provides an understanding of plant-growth-promoting activity of the silicate-solubilizing bacterium, its adaptation to various stresses, and its uptake of different metalloids including As, Ge, and Si

    Deciphering Haplotypic Variation and Gene Expression Dynamics Associated with Nutritional and Cooking Quality in Rice

    No full text
    Nutritional quality improvement of rice is the key to ensure global food security. Consequently, enormous efforts have been made to develop genomics and transcriptomics resources for rice. The available omics resources along with the molecular understanding of trait development can be utilized for efficient exploration of genetic resources for breeding programs. In the present study, 80 genes known to regulate the nutritional and cooking quality of rice were extensively studied to understand the haplotypic variability and gene expression dynamics. The haplotypic variability of selected genes were defined using whole-genome re-sequencing data of ~4700 diverse genotypes. The analytical workflow identified 133 deleterious single-nucleotide polymorphisms, which are predicted to affect the gene function. Furthermore, 788 haplotype groups were defined for 80 genes, and the distribution and evolution of these haplotype groups in rice were described. The nucleotide diversity for the selected genes was significantly reduced in cultivated rice as compared with that in wild rice. The utility of the approach was successfully demonstrated by revealing the haplotypic association of chalk5 gene with the varying degree of grain chalkiness. The gene expression atlas was developed for these genes by analyzing RNA-Seq transcriptome profiling data from 102 independent sequence libraries. Subsequently, weighted gene co-expression meta-analyses of 11,726 publicly available RNAseq libraries identified 19 genes as the hub of interactions. The comprehensive analyses of genetic polymorphisms, allelic distribution, and gene expression profiling of key quality traits will help in exploring the most desired haplotype for grain quality improvement. Similarly, the information provided here will be helpful to understand the molecular mechanism involved in the development of nutritional and cooking quality traits in rice

    Pinpointing Genomic Regions and Candidate Genes Associated with Seed Oil and Protein Content in Soybean through an Integrative Transcriptomic and QTL Meta-Analysis

    No full text
    Soybean with enriched nutrients has emerged as a prominent source of edible oil and protein. In the present study, a meta-analysis was performed by integrating quantitative trait loci (QTLs) information, region-specific association and transcriptomic analysis. Analysis of about a thousand QTLs previously identified in soybean helped to pinpoint 14 meta-QTLs for oil and 16 meta-QTLs for protein content. Similarly, region-specific association analysis using whole genome re-sequenced data was performed for the most promising meta-QTL on chromosomes 6 and 20. Only 94 out of 468 genes related to fatty acid and protein metabolic pathways identified within the meta-QTL region were found to be expressed in seeds. Allele mining and haplotyping of these selected genes were performed using whole genome resequencing data. Interestingly, a significant haplotypic association of some genes with oil and protein content was observed, for instance, in the case of FAD2-1B gene, an average seed oil content of 20.22% for haplotype 1 compared to 15.52% for haplotype 5 was observed. In addition, the mutation S86F in the FAD2-1B gene produces a destabilizing effect of (ΔΔG Stability) −0.31 kcal/mol. Transcriptomic analysis revealed the tissue-specific expression of candidate genes. Based on their higher expression in seed developmental stages, genes such as sugar transporter, fatty acid desaturase (FAD), lipid transporter, major facilitator protein and amino acid transporter can be targeted for functional validation. The approach and information generated in the present study will be helpful in the map-based cloning of regulatory genes, as well as for marker-assisted breeding in soybean

    Pinpointing Genomic Regions and Candidate Genes Associated with Seed Oil and Protein Content in Soybean through an Integrative Transcriptomic and QTL Meta-Analysis

    No full text
    Soybean with enriched nutrients has emerged as a prominent source of edible oil and protein. In the present study, a meta-analysis was performed by integrating quantitative trait loci (QTLs) information, region-specific association and transcriptomic analysis. Analysis of about a thousand QTLs previously identified in soybean helped to pinpoint 14 meta-QTLs for oil and 16 meta-QTLs for protein content. Similarly, region-specific association analysis using whole genome re-sequenced data was performed for the most promising meta-QTL on chromosomes 6 and 20. Only 94 out of 468 genes related to fatty acid and protein metabolic pathways identified within the meta-QTL region were found to be expressed in seeds. Allele mining and haplotyping of these selected genes were performed using whole genome resequencing data. Interestingly, a significant haplotypic association of some genes with oil and protein content was observed, for instance, in the case of FAD2-1B gene, an average seed oil content of 20.22% for haplotype 1 compared to 15.52% for haplotype 5 was observed. In addition, the mutation S86F in the FAD2-1B gene produces a destabilizing effect of (ΔΔG Stability) −0.31 kcal/mol. Transcriptomic analysis revealed the tissue-specific expression of candidate genes. Based on their higher expression in seed developmental stages, genes such as sugar transporter, fatty acid desaturase (FAD), lipid transporter, major facilitator protein and amino acid transporter can be targeted for functional validation. The approach and information generated in the present study will be helpful in the map-based cloning of regulatory genes, as well as for marker-assisted breeding in soybean
    corecore