20 research outputs found

    Marked Circadian Variation in Number and Type of Hyperacute Strokes During the 24 Hour Day-Night Cycle

    Get PDF
    Introduction: Circadian variations in stroke onset provide critical information for the allocation of pre-hospital and hospital resources in clinical care. Confining analysis to patients with defined onset in waking and clearly distinguished ischemic and hemorrhagic stroke subtypes, would substantial benefit our understanding of stroke etiology. Methods: We analyzed patients enrolled in the NIH FAST-MAG phase 3 trial of field-initiated neuroprotective agents in patients with hyperacute stroke within 2h of onset. Onset times were analyzed in 1h time blocks throughout the 24h day-night cycle. Patient demographic and clinical features, medical history, imaging characteristics, and stroke deficit severity were correlated with onset times. Results: Among 1632 patients, final diagnoses were acute cerebral ischemia in 76.2% and intracranial hemorrhage in 23.7%. Acute cerebral ischemia (ACI) had a unimodal distribution with peak onset at midday (12:00-12:59); intracerebral hemorrhage (ICH) a bimodal distribution with peaks at mid-morning (08:00-08:59) and early evening (18:00-18:59). Events were markedly reduced in early morning, with only 3.4% starting in the first 25% of the day. The proportion of hemorrhagic was higher in the first 8h of the day (00:00-07:59) than the remaining 16h, 33.3% vs 22.5%, p=0.006. ACI and ICH patients displayed fairly homogeneous vascular risk factors, presenting deficit severity, and initial brain imaging findings across all time periods. Discussion: There is marked, more than 10-fold, circadian variation in onset of acute cerebrovascular disease, and circadian variation in the ratio of ischemic to hemorrhagic neurovascular events. These findings can inform resource planning for regional systems of acute stroke care

    Quantifying the amount of greater brain ischemia protection time with pre-hospital vs. in-hospital neuroprotective agent start

    No full text
    The objective of this study is to quantify the increase in brain-under-protection time that may be achieved with pre-hospital compared with the post-arrival start of neuroprotective therapy among patients undergoing endovascular thrombectomy. In order to do this, a comparative analysis was performed of two randomized trials of neuroprotective agents: (1) pre-hospital strategy: Field administration of stroke therapy-magnesium (FAST-MAG) Trial; (2) in-hospital strategy: Efficacy and safety of nerinetide for the treatment of acute ischemic stroke (ESCAPE-NA1) Trial. In the FAST-MAG trial, among 1,041 acute ischemic stroke patients, 44 were treated with endovascular reperfusion therapy (ERT), including 32 treated with both intravenous thrombolysis and ERT and 12 treated with ERT alone. In the ESCAPE-NA1 trial, among 1,105 acute ischemic stroke patients, 659 were treated with both intravenous thrombolysis and ERT, and 446 were treated with ERT alone. The start of the neuroprotective agent was sooner after onset with pre-hospital vs. in-hospital start: 45 m (IQR 38-56) vs. 122 m. The neuroprotective agent in FAST-MAG was started 8 min prior to ED arrival compared with 64 min after arrival in ESCAPE-NA1. Projecting modern endovascular workflows to FAST-MAG, the total time of "brain under protection" (neuroprotective agent start to reperfusion) was greater with pre-hospital than in-hospital start: 94 m (IQR 90-98) vs. 22 m. Initiating a neuroprotective agent in the pre-hospital setting enables a faster treatment start, yielding 72 min additional brain protection time for patients with acute ischemic stroke. These findings provide support for the increased performance of ambulance-based, pre-hospital treatment trials in the development of neuroprotective stroke therapies

    Impaired Distal Perfusion Predicts Length of Hospital Stay in Patients with Symptomatic Middle Cerebral Artery Stenosis

    No full text
    Perfusion imaging can risk stratify patients with symptomatic intracranial stenosis. We aim to determine the association between perfusion delay and length of hospital stay (LOS) in symptomatic middle cerebral artery (MCA) stenosis patients. This is a retrospective study of consecutive patients admitted to a comprehensive stroke center over 5 years with ischemic stroke or transient ischemic attack (TIA) within 7 days of symptom onset due to MCA stenosis (50-99%) and underwent perfusion imaging. Patients were divided into three groups: mismatch volume ≥ 15 cc based on T max > 6 second delay, T max 4-6 second delay, and <4 second delay. The outcome was LOS, both as a continuous variable and categorical (≥7 days [prolonged LOS] vs. <7 days). We used adjusted regression analyses to determine the association between perfusion categories and LOS. One hundred and seventy eight of 194 patients met the inclusion criteria. After adjusting for age and NIHSS, T max >6 second mismatch was associated with prolonged LOS (OR 2.94 95% CI 1.06-8.18; P = .039), but T max 4-6 second was not (OR 1.45 95% CI .46-4.58, P = .528). We found similar associations when LOS was a continuous variable for T max > 6 second (β coefficient = 2.01, 95% CI .05-3.97, P = .044) and T max 4-6 second (β coefficient = 1.24, 95% CI -.85 to 3.34, P = .244). In patients with symptomatic MCA stenosis, T max > 6 second perfusion delay is associated with prolonged LOS. Prospective studies are needed to validate our findings

    Intracranial atherosclerotic disease mechanistic subtypes drive hypoperfusion patterns

    No full text
    In symptomatic intracranial atherosclerotic stenosis (ICAS), borderzone infarct pattern and perfusion mismatch are associated with increased risk of recurrent strokes, which may reflect the shared underlying mechanism of hypoperfusion distal to the intracranial atherosclerosis. Accordingly, we hypothesized a correlation between hypoperfusion volumes and ICAS infarct patterns based on the respective underlying mechanistic subtypes. We conducted a retrospective analysis of consecutive symptomatic ICAS cases, acute strokes due to subocclusive (50%-99%) intracranial stenosis. The following mechanistic subtypes were assigned based on the infarct pattern on the diffusion-weighted imaging: Branch occlusive disease (BOD), internal borderzone (IBZ), and thromboembolic (TE). Perfusion parameters, obtained concurrently with the MRI, were studied in each group. A total of 42 patients (57% women, mean age 71 ± 13 years old) with symptomatic ICAS received MRI within 24 h of acute presentation. Fourteen IBZ, 11 BOD, and 17 TE patterns were identified. IBZ pattern yielded higher total T > 4 s and T > 6 s perfusion delay volumes, as well as corresponding T  > 4 s and T  > 6 s mismatch volume, compared to BOD. TE pattern exhibited greater median T  > 6 s hypoperfusion delay in volume compared to BOD. In IBZ versus TE, the volume difference between T > 4 s and T > 6 s (Δ T  > 4 s - T  > 6 s) was substantially greater. ICAS infarct patterns, in keeping with their respective underlying mechanisms, may correlate with distinct perfusion profiles
    corecore