36 research outputs found

    Six days of low carbohydrate, not energy availability, alters the iron and immune response to exercise in elite athletes

    Get PDF
    Purpose To quantify the effects of a short-term (6-d) low carbohydrate (CHO) high fat (LCHF), and low energy availability (LEA) diet on immune, inflammatory, and iron-regulatory responses to exercise in endurance athletes. Methods Twenty-eight elite male race walkers completed two 6-d diet/training phases. During phase 1 (Baseline), all athletes consumed a high CHO/energy availability (CON) diet (65% CHO and ~40 kcal·kg−1 fat-free mass (FFM)·d−1). In phase 2 (Adaptation), athletes were allocated to either a CON (n = 10), LCHF (n = 8; <50 g·d−1 CHO and ~40 kcal·kg−1·FFM−1·d−1), or LEA diet (n = 10; 60% CHO and 15 kcal·kg−1·FFM−1·d−1). At the end of each phase, athletes completed a 25-km race walk protocol at ~75% V˙O2max. On each occasion, venous blood was collected before and after exercise for interleukin-6, hepcidin, cortisol, and glucose concentrations, as well as white blood cell counts. Results The LCHF athletes displayed a greater IL-6 (P = 0.019) and hepcidin (P = 0.011) response to exercise after Adaptation, compared with Baseline. Similarly, postexercise increases in total white blood cell counts (P = 0.026) and cortisol levels (P 0.05). No differences between CON and LEA were evident for any of the measured biological markers (all P > 0.05). Conclusions Short-term adherence to a LCHF diet elicited small yet unfavorable iron, immune, and stress responses to exercise. In contrast, no substantial alterations to athlete health were observed when athletes restricted energy availability compared with athletes with adequate energy availability. Therefore, short-term restriction of CHO, rather than energy, may have greater negative impacts on athlete health

    Short severe energy restriction with refueling reduces body mass without altering training-associated performance improvement

    Get PDF
    Purpose We investigated short-term (9 d) exposure to low energy availability (LEA) in elite endurance athletes during a block of intensified training on self-reported well-being, body composition, and performance. Methods Twenty-three highly trained race walkers undertook an ~3-wk research-embedded training camp during which they undertook baseline testing and 6 d of high energy/carbohydrate (HCHO) availability (40 kcal·kg FFM−1·d−1) before being allocated to 9 d continuation of this diet (n = 10 M, 2 F) or a significant decrease in energy availability to 15 kcal·kg FFM−1·d−1 (LEA: n = 10 M, 1 F). A real-world 10,000-m race walking event was undertaken before (baseline) and after (adaptation) these phases, with races being preceded by standardized carbohydrate fueling (8 g·kg body mass [BM]−1 for 24 h and 2 g·kg BM−1 prerace meal). Results Dual-energy x-ray absorptiometry–assessed body composition showed BM loss (2.0 kg, P < 0.001), primarily due to a 1.6-kg fat mass reduction (P < 0.001) in LEA, with smaller losses (BM = 0.9 kg, P = 0.008; fat mass = 0.9 kg, P < 0.001) in HCHO. The 76-item Recovery–Stress Questionnaire for Athletes, undertaken at the end of each dietary phase, showed significant diet–trial effects for overall stress (P = 0.021), overall recovery (P = 0.024), sport-specific stress (P = 0.003), and sport-specific recovery (P = 0.012). However, improvements in race performance were similar: 4.5% ± 4.1% and 3.5% ± 1.8% for HCHO and LEA, respectively (P < 0.001). The relationship between changes in performance and prerace BM was not significant (r = −0.08 [−0.49 to 0.35], P = 0.717). Conclusions A series of strategically timed but brief phases of substantially restricted energy availability might achieve ideal race weight as part of a long-term periodization of physique by high-performance athletes, but the relationship between BM, training quality, and performance in weight-dependent endurance sports is complicated

    Short-term very high carbohydrate diet and gut-training have minor effects on gastrointestinal status and performance in highly trained endurance athletes

    Get PDF
    We implemented a multi-pronged strategy (MAX) involving chronic (2 weeks high carbohydrate [CHO] diet + gut-training) and acute (CHO loading + 90 g·h−1 CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON) in two groups of athletes. Nineteen elite male race walkers (MAX: 9; CON:10) undertook a 26 km race-walking session before and after the respective interventions to investigate gastrointestinal function (absorption capacity), integrity (epithelial injury), and symptoms (GIS). We observed considerable individual variability in responses, resulting in a statistically significant (p < 0.001) yet likely clinically insignificant increase (Δ 736 pg·mL−1) in I-FABP after exercise across all trials, with no significant differences in breath H2 across exercise (p = 0.970). MAX was associated with increased GIS in the second half of the exercise, especially in upper GIS (p < 0.01). Eighteen highly trained male and female distance runners (MAX: 10; CON: 8) then completed a 35 km run (28 km steady-state + 7 km time-trial) supported by either a slightly modified MAX or CON strategy. Inter-individual variability was observed, without major differences in epithelial cell intestinal fatty acid binding protein (I-FABP) or GIS, due to exercise, trial, or group, despite the 3-fold increase in exercise CHO intake in MAX post-intervention. The tight-junction (claudin-3) response decreased in both groups from pre- to post-intervention. Groups achieved a similar performance improvement from pre- to post-intervention (CON = 39 s [95 CI 15–63 s]; MAX = 36 s [13–59 s]; p = 0.002). Although this suggests that further increases in CHO availability above current guidelines do not confer additional advantages, limitations in our study execution (e.g., confounding loss of BM in several individuals despite a live-in training camp environment and significant increases in aerobic capacity due to intensified training) may have masked small differences. Therefore, athletes should meet the minimum CHO guidelines for training and competition goals, noting that, with practice, increased CHO intake can be tolerated, and may contribute to performance outcomes

    Altitude exposure as a training &amp; iron overload management strategy post leukemia

    No full text
    Objectives: To examine iron stores, hemoglobin mass, and performance before, during and after intermittent altitude exposure in a professional male rugby player experiencing iron overload following blood transfusions for treatment for acute myeloid leukemia. Design: Longitudinal, repeated measures, single case-study. Methods: The player was followed prior to (control), and during (study), an in-season block of altitude training. During the control period two venesections were performed for a total of 750 mL of blood removal. Internal and external training load, match statistics, blood volume, plasma volume, haemoglobin mass, serum ferritin and reticulocyte count were monitored throughout. Results: During the control period serum ferritin declined following the two venesections (∼51%) as did haemoglobin mass (∼2%), reticulocyte count remained stable. During the study period serum ferritin further declined (∼30%), however haemoglobin mass and reticulocyte count increased (∼4% and ∼14% respectively). Internal training load for the control and study period was similar, however external training load was lower in the study period. Match statistics were not favourable for the player during the control period, however they improved during the study period. Conclusions: This case supports the theory that individuals with elevated iron availability are well placed to achieve increases in haemoglobin mass. Furthermore, although therapeutic venesections may still be required to manage iron overload, the addition of altitude exposure may be a method to assist in reducing total body iron by means of mobilising available (excessive) iron to incorporate into haemoglobin. Altitude exposure did not hinder the players’ performance. Further research is encouraged

    Acute Ketogenic Diet and Ketone Ester Supplementation Impairs Race Walk Performance

    No full text
    The consumption of a ketogenic low-carbohydrate (CHO), high-fat (LCHF) diet increases skeletal muscle fat utilization but impairs exercise economy. Whether the concomitant increase in circulating endogenous ketone bodies (KB) alters the capacity to metabolize exogenous ketone supplements such as the popular ketone monoester is unknown. Purpose: This study aimed to determine if LCHF and ketone ester (KE) supplementation can synergistically alter exercise metabolism and improve performance. Methods: Elite race walkers (n = 18, 15 males and 3 females; V˙O2peak, 62 ± 6 mL·min−1·kg−1) undertook a four-stage exercise economy test and real-life 10,000-m race before and after a 5-d isoenergetic high-CHO (HCHO, ~60%–65% fat; CHO, 20% fat; n = 9) or LCHF (75%–80% fat, <50 g·d−1 CHO, n = 9) diet. The LCHF group performed additional economy tests before and after diet after supplementation with 573 mg·kg−1 body mass KE (HVMN; HVMN Inc., San Francisco, CA), which was also consumed for race 2. Results: The oxygen cost of exercise (relative V˙O2, mL·min−1·kg−1) increased across all four stages after LCHF (P < 0.005). This occurred in association with increased fat oxidation rates, with a reciprocal decrease in CHO oxidation (P < 0.001). Substrate utilization in the HCHO group remained unaltered. The consumption of KE before the LCHF diet increased circulating KB (P < 0.05), peaking at 3.2 ± 0.6 mM, but did not alter V˙O2 or RER. LCHF diet elevated resting circulating KB (0.3 ± 0.1 vs 0.1 ± 0.1 mM), but concentrations after supplementation did not differ from the earlier ketone trial. Critically, race performance was impaired by ~6% (P < 0.0001) relative to baseline in the LCHF group but was unaltered in HCHO. Conclusion: Despite elevating endogenous KB production, an LCHF diet does not augment the metabolic responses to KE supplementation and negatively affects race performance
    corecore