2 research outputs found

    Potential signatures of heavy metal complexes in lichen reflectance spectra

    No full text
    <p>Lichens are sensitive to atmospheric pollutants emitted from anthropogenic activities and are thus effective biomonitors. A variety of heavy metals, such as nickel (Ni), iron (Fe), lead (Pb), copper (Cu), and cadmium (Cd), can be emitted by metal smelters. The purpose of this study was twofold: (1) to measure the spectral reflectance properties (350–2500 nm) of expected heavy metal complexes in lichens (oxalates and sulphides); and (2) to determine whether these complexes contribute features to reflectance spectra of lichens from the vicinity of a heavy metal smelter. Some metal oxalate spectra are characterized by crystal field transition absorption bands in the 500–1300 nm region, which are specific to the particular metal cation they contain and its oxidation state. The 1900–2500 nm region exhibits multiple absorption bands attributable to the oxalate molecule. The metal sulphide reflectance spectra are characterized by generally low reflectance and few if any strong or diagnostic spectral features; those that are found can be related to a specific cation and its oxidation state. These spectra were used to determine whether reflectance spectra of a diverse suite of lichens collected downwind of a smelter showed spectral evidence indicative of heavy metal oxalates or sulphides. The lichen spectra, coupled with the oxalate and sulphide spectra and independently determined heavy metal concentration, failed to reveal spectral features that could be unambiguously related to heavy metal complexes. This was likely due to a number of causes: lichen reflectance spectra have absorption bands that overlap those of oxalates; oxalate and sulphide concentrations may have been too low to allow for their unambiguous identification, and lichen spectra are naturally diverse in the region below 1300 nm. There were no strong or significant linear trends between metal concentrations and distance from the smelter (coefficient of determination (<i>R</i><sup>2</sup>) values <0.05), or between absorption band depths in the lichen spectra and distance from the smelter (<i>R</i><sup>2</sup> values <0.06). This was likely due to the inclusion of multiple lichen species in the analysis, which may interact with airborne pollutants in different ways, and microenvironmental effects.</p
    corecore