3 research outputs found

    Ion stopping in dense plasma target for high energy density physics

    Get PDF
    The basic physics of nonrelativistic and electromagnetic ion stopping in hot and ionized plasma targets is thoroughly updated. Corresponding projectile-target interactions involve enhanced projectile ionization and coupling with target free electrons leading to significantly larger energy losses in hot targets when contrasted to their cold homologues. Standard stoppping formalism is framed around the most economical extrapolation of high velocity stopping in cold matter. Further elaborations pay attention to target electron coupling and nonlinearities due to enhanced projectile charge state, as well. Scaling rules are then used to optimize the enhanced stopping of MeV/amu ions in plasmas with electron linear densities nel ~ 10 18 -10 20 cm -2 . The synchronous firing of dense and strongly ionized plasmas with the time structure of bunched and energetic multicharged ion beam then allow to probe, for the first time, the long searched enhanced plasma stopping and projectile charge at target exit. Laser ablated plasmas (SPQR1) and dense linear plasma columns (SPQR2) show up as targets of choice in providing accurate and on line measurements of plasma parameters. Corresponding stopping results are of a central significance in asserting the validity of intense ion beam scenarios for driving thermonuclear pellets. Other applications of note feature thorium induced fission, novel ion sources and specific material processing through low energy ion beams. Last but not least, the given ion beam-plasma target interaction physics is likely to pave a way to the production and diagnostics of warm dense matter (WDM)

    Midrapidity antiproton-to-proton ratio in pp collisons root s=0.9 and 7 TeV measured by the ALICE experiment

    No full text
    The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at root s = 0.9 and 7 TeV during the initial running periods of the Large Hadron Collider. The measurement covers the transverse momentum interval 0.45 < p(t) < 1.05 GeV/c and rapidity vertical bar y vertical bar < 0.5. The ratio is measured to be R-vertical bar y vertical bar<0.5 = 0.957 +/- 0.006(stat) +/- 0.0014(syst) at 0.9 Tev and R-vertical bar y vertical bar<0.5 = 0.991 +/- 0.005 +/- 0.014(syst) at 7 TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions

    Transverse momentum spectra of charged particles in proton–proton collisions at √s=900 GeV with ALICE at the LHC

    No full text
    The inclusive charged particle transverse momentum distribution is measured in proton–proton collisions at s=900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (|η|<0.8) over the transverse momentum range 0.15<pT<10 GeV/c. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for |η|<0.8 is 〈pT〉INEL=0.483±0.001 (stat.)±0.007 (syst.) GeV/c and 〈pT〉NSD=0.489±0.001 (stat.)±0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger 〈pT〉 than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET
    corecore