3 research outputs found

    GENETIC POLYMORPHISM OF 27 Y-STR LOCI IN THEWESTERN KAZAKH TRIBES FROM KAZAKHSTAN AND KARAKALPAKSTAN, UZBEKISTAN

    Get PDF
    Data on the genetic polymorphism of 27 Y-STR in Kazakhs of the Junior Zhuz has been presented and analyzed in relation to forensic features. A total of 464 representatives of the Western Kazakh tribes of Kazakhstan (Western Kazakhs, n = 405) and Uzbekistan (Karakalpakstan Kazakhs, n = 59) were examined by the Yfiler Plus set. The data are available in the YHRD under accession numbers YA006010 and YA006009. Genetic analysis (AMOVA and MDS) did not show significant differences between the two groups (Kazakhstan and Karakalpakstan Kazakhs) in terms of Y-chromosome diversity. Both groups are characterized by haplogroup C2a1a2 as a founder effect, which dominated two of the three tribes: Alimuly (67%), Baiuly (74.6%), and Zhetiru (25.8%). At the same time, the phylogenetic network for each tribe found its own clusters within C2a1a2. Western Kazakhs and Karakalpakstan Kazakhs present high values of unique haplotypes (84.44% and 96.61%), discrimination capacity (90.37% and 98.30%), and haplotype diversity (0.9991 and 0.9994). A set of 27 Y-STR loci distinguishes closely related individuals within the Western Kazakh tribes quite well. It is suitable for forensic application, and is also optimal for population genetics studies

    Extracellular vesicles, stem cells and the role of miRNAs in neurodegeneration

    No full text
    There are different modalities of intercellular communication governed by cellular homeostasis. In this review, we will explore one of these forms of communication called extracellular vesicles (EVs). These vesicles are released by all cells in the body and are heterogeneous in nature. The primary function of EVs is to share information through their cargo consisting of proteins, lipids and nucleic acids (mRNA, miRNA, dsDNA etc.) with other cells, which have a direct consequence on their microenvironment. We will focus on the role of EVs of mesenchymal stem cells (MSCs) in the nervous system and how these participate in intercellular communication to maintain physiological function and provide neuroprotection. However, deregulation of this same communication system could play a role in several neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, multiple sclerosis, prion disease and Huntington's disease. The release of EVs from a cell provides crucial information to what is happening inside the cell and thus could be used in diagnostics and therapy. We will discuss and explore new avenues for the clinical applications of using engineered MSC-EVs and their potential therapeutic benefit in treating neurodegenerative diseases. [Abstract copyright: Copyright© Bentham Science Publishers; For any queries, please email at [email protected].

    Genetic polymorphism of Y-chromosome in Kazakh populations from Southern Kazakhstan

    No full text
    Abstract Background The Kazakhs are one of the biggest Turkic-speaking ethnic groups, controlling vast swaths of land from the Altai to the Caspian Sea. In terms of area, Kazakhstan is ranked ninth in the world. Northern, Eastern, and Western Kazakhstan have already been studied in relation to genetic polymorphism 27 Y-STR. However, current information on the genetic polymorphism of the Y-chromosome of Southern Kazakhstan is limited only by 17 Y-STR and no geographical study of other regions has been studied at this variation. Results The Kazakhstan Y-chromosome Haplotype Reference Database was expanded with 468 Kazakh males from the Zhambyl and Turkestan regions of South Kazakhstan by having their 27 Y-STR loci and 23 Y-SNP markers analyzed. Discrimination capacity (DC = 91.23%), haplotype match probability (HPM = 0.0029) and haplotype diversity (HD = 0.9992) are defined. Most of this Y-chromosome variability is attributed to haplogroups C2a1a1b1-F1756 (2.1%), C2a1a2-M48 (7.3%), C2a1a3-F1918 (33.3%) and C2b1a1a1a-M407 (6%). Median-joining network analysis was applied to understand the relationship between the haplotypes of the three regions. In three genetic layer can be described the position of the populations of the Southern region of Kazakhstan—the geographic Kazakh populations of Kazakhstan, the Kazakh tribal groups, and the people of bordering Asia. Conclusion The Kazakhstan Y-chromosome Haplotype Reference Database was formed for 27 Y-STR loci with a total sample of 1796 samples of Kazakhs from 16 regions of Kazakhstan. The variability of the Y-chromosome of the Kazakhs in a geographical context can be divided into four main clusters—south, north, east, west. At the same time, in the genetic space of tribal groups, the population of southern Kazakhs clusters with tribes from the same region, and genetic proximity is determined with the populations of the Hazaras of Afghanistan and the Mongols of China
    corecore