6 research outputs found
Managing groundwater for building resilience for sustainable agriculture in South Asia
South Asia's heavy reliance on groundwater for irrigated agricultural production supports the livelihoods of tens of millions of smallholder farmers but is being undermined by rampant overexploitation of groundwater. Without major intervention, this is expected to be further exacerbated by growing demand and climate change. Groundwater management, scientific and evidence-based, can make an important contribution to managing unsustainable groundwater use and strengthening the climate resilience of farmers due to groundwater's unique storage characteristics. This study brings together a set of strategies and solutions to better manage groundwater that cover the augmentation of groundwater recharge through managed aquifer recharge, management of groundwater demand through participatory groundwater management and other methods, and the harnessing synergies of co-dependent sectors. The opportunities, constraints and available evidence for each are analysed and the boundaries, barriers and specificities identified to establish entry points for positive change through policies and implementation programmes
Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab
This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena