193 research outputs found

    Bright squeezed vacuum in a nonlinear interferometer: frequency/temporal Schmidt-mode description

    Full text link
    Control over the spectral properties of the bright squeezed vacuum (BSV), a highly multimode non-classical macroscopic state of light that can be generated through high-gain parametric down conversion, is crucial for many applications. In particular, in several recent experiments BSV is generated in a strongly pumped SU(1,1) interferometer to achieve phase supersensitivity, perform broadband homodyne detection, or tailor the frequency spectrum of squeezed light. In this work, we present an analytical approach to the theoretical description of BSV in the frequency domain based on the Bloch-Messiah reduction and the Schmidt-mode formalism. As a special case we consider a strongly pumped SU(1,1) interferometer. We show that different moments of the radiation at its output depend on the phase, dispersion and the parametric gain in a nontrivial way, thereby providing additional insights on the capabilities of nonlinear interferometers. In particular, a dramatic change in the spectrum occurs as the parametric gain increases

    Phase sensitivity of spatially broadband high-gain SU(1,1) interferometers

    Full text link
    Nonlinear interferometers are promising tools for quantum metrology, as they are characterized by an improved phase sensitivity scaling compared to linear interferometers operating with classical light. However, the multimodeness of the light generated in these interferometers results in the destruction of their phase sensitivity, requiring advanced interferometric configurations for multimode light. Moreover, in contrast to the single-mode case, time-ordering effects play an important role for the high-gain regime in the multimode scenario and must be taken into account for a correct estimation of the phase sensitivity. In this work, we present a theoretical description of spatially multimode SU(1,1) interferometers operating at low and high parametric gains. Our approach is based on a step-by-step solution of a system of integro-differential equations for each nonlinear interaction region. We focus on interferometers with diffraction compensation, where focusing elements such as a parabolic mirror are used to compensate for the divergence of the light. We investigate plane-wave and Gaussian pumping and show that for any parametric gain, there exists a region of phases for which the phase sensitivity surpasses the standard shot-noise scaling and discuss the regimes where it approaches the Heisenberg scale. Finally, we arrive at insightful analytical expressions for the phase sensitivity that are valid for both low and high parametric gain and demonstrate how it depends on the number of spatial modes of the system

    Properties of bright squeezed vacuum at increasing brightness

    No full text
    A bright squeezed vacuum (BSV) is a nonclassical macroscopic state of light, which is generated through high-gain parametric down-conversion or four-wave mixing. Although the BSV is an important tool in quantum optics and has a lot of applications, its theoretical description is still not complete. In particular, the existing description in terms of Schmidt modes with gain-independent shapes fails to explain the spectral broadening observed in the experiment as the mean number of photons increases. Meanwhile, the semiclassical description accounting for the broadening does not allow us to decouple the intermodal photon-number correlations. In this work, we present a new generalized theoretical approach to describe the spatial properties of a multimode BSV. In the multimode case, one has to take into account the complicated interplay between all involved modes: each plane-wave mode interacts with all other modes, which complicates the problem significantly. The developed approach is based on exchanging the (k, t ) and (ω, z) representations and solving a system of integrodifferential equations. Our approach predicts correctly the dynamics of the Schmidt modes and the broadening of the angular distribution with the increase in the BSV mean photon number due to a stronger pumping. Moreover, the model correctly describes various properties of a widely used experimental configuration with two crystals and an air gap between them, namely, an SU(1,1) interferometer. In particular, it predicts the narrowing of the intensity distribution, the reduction and shift of the side lobes, and the decline in the interference visibility as the mean photon number increases due to stronger pumping. The presented experimental results confirm the validity of the new approach. The model can be easily extended to the case of the frequency spectrum, frequency Schmidt modes, and other experimental configurations

    Projective filtering of a single spatial radiation eigenmode

    Full text link
    Lossless filtering of a single coherent (Schmidt) mode from spatially multimode radiation is a problem crucial for optics in general and for quantum optics in particular. It becomes especially important in the case of nonclassical light that is fragile to optical losses. An example is bright squeezed vacuum generated via high-gain parametric down conversion or four-wave mixing. Its highly multiphoton and multimode structure offers a huge increase in the information capacity provided that each mode can be addressed separately. However, the nonclassical signature of bright squeezed vacuum, photon-number correlations, are highly susceptible to losses. Here we demonstrate lossless filtering of a single spatial Schmidt mode by projecting the spatial spectrum of bright squeezed vacuum on the eigenmode of a single-mode fiber. Moreover, we show that the first Schmidt mode can be captured by simply maximizing the fiber-coupled intensity. Importantly, the projection operation does not affect the targeted mode and leaves it usable for further applications.Comment: 10 pages, 9 figure

    Spatial entanglement and state engineering via four-photon Hong-Ou-Mandel interference

    Full text link
    The phenomenon of entanglement is the basis of quantum information and quantum communication processes. Entangled systems with a large number of photons are of great interest at present because they provide a platform for streaming technologies based on photonics. In this paper we present a device which operates with four-photons and based on the Hong-Ou-Mandel (HOM) interference. The presented device allows to maximize the degree of spatial entanglement and generate the highly entangled four-dimensional Bell states. Furthermore, the use of the interferometer in different regimes leads to fast interference fringes in the coincidence probability with period of oscillations twice smaller than the pump wavelength. We have a good agreement between theoretical simulations and experimental results.Comment: 20 pages, 7 figur
    • …
    corecore